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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COMPLEX ANALYSIS II 

 

BLOCK-1 

Unit 1 Harmonic Function 

Unit 2 Analytic And Harmonic Function 

Unit 3 Application of Harmonic Function 

Unit 4 The Dirichlet Problem for the Unit Disk and Fourier Series 

Unit 5 Geometric Series and Convergence 

Unit 6Principal of Convergence 

Unit 7Convergence of Infinite Product 

 

BLOCK-2 

Unit 8 Comparison Test For Convergence 

Unit 9 Absolute and Uniform Convergence  

Unit 10 Factorization in Integral Function  

Unit 11 Cauchy’s Integral Function  

Unit 12 Complex Exponents and Zeros 

Unit 13 Genus and Laguerre’s Theorem  

Unit 14 Borel’s and Picard’s Theorem 

 

 

 

 

 

 

 



BLOCK-2 COMPLEX ANALYSIS II 

Introduction To Block-Ii 

Unit 8 Comparison Test For Convergence:Deals with comparison test 

and definition of series 

Unit 9 Absolute and Uniform Convergence:Deals with absolute 

convergence and uniform convergence series  

Unit 10 Factorization in Integral Function:Deals with factorization of 

integral function and Weierstrass Primary Factors 

Unit 11 Cauchy’s Integral Function:Deals with Cauchy’ integral 

function and Sokhotskii formula, Fundamental theorem of integration 

Unit 12 Complex Exponents and Zeros:Deals with complex exponents, 

singularities, zeros and poles 

Unit 13 Genus and Laguerre’s Theorem:Deals with Genus and 

Laguerre’s Theorem with its examples and properties. Also deals with 

Hadamard’s Theorem 

Unit 14 Borel’s and Picard’s Theorem:Deals with Borel’s and Picard’s 

Theorem with its statement and proof with examples 
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UNIT 8: COMPARISON TEST FOR 

CONVERGENCE 

STRUCTURE 

 

8.0 Objective 

8.1 Introduction 

8.1.1 The Definition of a Series 

8.1.2 Definition of Convergence, or the Limit of a Series 

8.2 List of Common Series 

8.2.1 Geometric Series 

 8.2.2 p-Series 

 8.2.3 Telescoping Series 

8.3 List of Series Test 

 8.3.1 The Common series Test 

   8.3.1.1 The Divergence Test 

   8.3.1.2 The Integral Test 

   8.3.1.3 The Comparison Test 

   8.3.1.4 The Limit Comparison Test 

   8.3.1.5 The Alternating Series Test 

   8.3.1.6 The Absolute Convergence Test 

   8.3.1.7 The Ratio Test 

   8.3.1.8 The Root Test 

8.4 Start of Test 

 8.4.2 Examples 

8.5 Summary 

8.6 Keyword 

8.7 Questions for review 

8.8 Suggestion Reading and References 

8.9 Answer to check your Progress 

 

8.0 OBJECTIVE 

 We study Comparison test for convergence of series 

 We study Definition of series 
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 We study Geometric series 

 We study p-series and telescoping series 

 We study Divergent test and its examples 

 

8.1 INTRODUCTION  

In mathematics, the comparison test, sometimes called the direct 

comparison test to distinguish it from similar related tests (especially 

the limit comparison test), provides a way of deducing the convergence 

or divergence of an infinite series or an improper integral. In both cases, 

the test works by comparing the given series or integral to one whose 

convergence properties are known. 

We have seen that the integral test allows us to determine the 

convergence or divergence of a series by comparing it to a related 

improper integral
i
al. In this section, we show how to use comparison 

tests to determine the convergence or divergence of a series by 

comparing it to a series whose convergence or divergence is known. 

Typically these tests are used to determine convergence of series that are 

similar to geometric series or p-series. 

Let  and  be a series with positive terms and suppose

, , .... 

1. If the bigger series converges, then the smaller series also converges. 

2. If the smaller series diverges, then the bigger series also diverges. 

8.2 THE DEFINITION OF A SERIES 

Let 

 

Be a sequence. We call the sum 
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An infinite series (or just a series) and denote it as 

. 

We define a second sequence, s[n], called the partial sums, by 

, 

, 

, 

Or, in general, 

. 

We then define convergence as follows: 

8.2.1 Definition of Convergence, or the Limit of a 

Series 

Given a series 

 

let s[n] denote its nth partial sum: 

. 

If the sequence s[n] has a limit, that is, if there is some s such that for 

all  > 0 there exists some N > 0 such that |s[n] - s| < , then the series is 

called convergent, and we say the series converges. We write 

 

or 
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. 

The number s is called the sum of the series. If the series does not 

converge, the series is called divergent, and we say the series diverges. 

8.2 LIST OF COMMON SERIES 

8.2.1 Geometric Series 
A series is called geometric if each term in the series is obtained from the 

preceding one by multiplying it by a common ratio. For example, the 

series 

 

Is geometric, since each term is obtained by multiplying the preceding 

term by 1/2. In general, a geometric series is of the form 

. 

Geometric series are useful because of the following result: 

The geometric series 

 

Is convergent if |r| < 1, and its sum is 

 

Otherwise, the geometric series is divergent. 

So, for our example above, a=1, and r=1/2, and the sum of the series is 

. 
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8.2.2 p-Series 
 

A series such as 

 

Is called a p-series. In general, a p-series follows the following form: 

 

P-series are useful because of the following theorem: 

The p-series 

 

Is convergent if p > 1 and divergent otherwise. 

Unfortunately, there is no simple theorem to give us the sum of a p-

series. For instance, the sum of the example series is 

. 

If p=1, we call the resulting series the harmonic series: 

 

By the above theorem, the harmonic series does not converge. 

8.2.3 Telescoping Series 
A telescoping series does not have a set form, like the geometric and p-

series do. A telescoping series is any series where nearly every term 

cancels with a preceding or following term. For instance, the series 
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Is telescoping. Look at the partial sums: 

 

 

Because of cancellation of adjacent terms. So, the sum of the series, 

which is the limit of the partial sums, is 1. 

You do have to be careful; not every telescoping series converges. Look 

at the following series: 

 

You might at first think that all of the terms will cancel, and you will be 

left with just 1 as the sum... But take a look at the partial sums: 

 

. 

This sequence does not converge, so the sum does not converge. This can 

be more easily seen if you simplify the expression for the term. You find 

that 

 

And any infinite sum with a constant term diverges. 

Check in Progress-I 

Note: Please give solution of questions in space give below: 

Q. 1 Give definition of Series. 
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Solution: 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..…………………………………………………………………

……………… 

Q. 2 give the definition of convergence. 

 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..………………………………………………………………………………… 

8.3 LIST OF SERIES TESTS 

 

The series of interest will always by symbolized as the sum, as n goes 

from 1 to infinity, of a[n]. In addition, any auxiliary sequence will be 

symbolized as the sum, as n goes from 1 to infinity, of b[n]. Or, 

symbolically, 

 And . 

 

8.3.1 The Common Series Tests 

8.3.1.1 The Divergence Test 

If the limit of a[n] is not zero, or does not exist, then the sum diverges. 

 

 

For instance, the sum 
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Doesn’t converge, since the limit as n goes to infinity of (n+1)/n is 1. 

Note that the implication only goes one way; if the limit is zero, you still 

may not get convergence. For instance, the terms of 

 

Have a limit of zero, but the sum does not converge. 

8.3.1.2 The Integral Test 

If you can define f so that it is a continuous, positive, decreasing function 

from 1 to infinity (including 1) such that a[n]=f(n), then the sum will 

converge if and only if the integral off from 1 to infinity converges. 

 

 

 

For example, look at the sum 

. 

Does it converge? Well, define f(x) as follows 

 

And see if the integral converges. 
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The integral does not converge, so the sum does not converge either. 

Remember, though, that the value of the integral is not the same as the 

sum of the series, at least in general. For instance, 

 

But 

 

 

. 

8.3.1.3 The Comparison Test 

Let b[n] be a second series. Require that all a[n] and b[n] are positive. 

If b[n] converges, and a[n] <=b[n] for all n, then a[n] also converges. If 

the sum of b[n] diverges, and a[n]>=b[n] for all n, then the sum of a[n] 

also diverges. 

 

 

 

The idea with this test is that if each term of one series is smaller than 

another, then the sum of that series must be smaller. So, if every term of 

a series is smaller than the corresponding term of a converging series, the 
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smaller series must also converge. And if a smaller series diverges, the 

larger one must also diverge. 

As an example, consider the series 

. 

Compare that with a second series as follows: 

 (Since n+1<2n for n>=1) . 

. 

Since this new, smaller sum diverges (it is a harmonic series), the 

original sum also diverges. 

For another example, look at 

. 

Compare that with a second series also: 

. 

 

Converges (since it is a p-series with p greater than one), so the first sum 

also converges. 

8.3.1.4 The Limit Comparison Test 

 

Let b[n] be a second series. Require that all a[n] and b[n] are positive. 

 If the limit of a[n]/b[n] is positive, then the sum of a[n] 

converges if and only if the sum of b[n] converges. 
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 If the limit of a[n]/b[n] is zero, and the sum of b[n] converges, 

then the sum of a[n] also converges. 

 If the limit of a[n]/b[n] is infinite, and the sum of b[n] diverges, 

then the sum of a[n] also diverges. 

 

 

 

 

Here we are comparing how fast the terms grow. If the limit is positive, 

then the terms are growing at the same rate, so both series converge or 

diverge together. If the limit is zero, then the bottom terms are growing 

more quickly than the top terms. Thus, if the bottom series converges, 

the top series, which is growing more slowly, must also converge. If the 

limit is infinite, then the bottom series is growing more slowly, so if it 

diverges, the other series must also diverge. 

As an example, look at the series 

 

And compare it with the harmonic series 

. 

Look at the limit of the fraction of corresponding terms: 

. 
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The limit is positive, so the two series converge or diverge together. 

Since the harmonic series diverges, so does the other series. 

As another example, 

 

Compared with the harmonic series gives 

 

Which says that if the harmonic series converges, the first series must 

also converge. Unfortunately, the harmonic series does not converge, so 

we must test the series again. Let's try n^-2: 

 

This limit is positive, and n^-2 is a convergent p-series, so the series in 

question does converge. 

8.3.1.5 The Alternating Series Test 

 

If a[n]=(-1)^(n+1)b[n], where b[n] is positive, decreasing, and 

converging to zero, then the sum of a[n] converges. 

 

 

With the Alternating Series Test, all we need to know to determine 

convergence of the series is whether the limit of b[n] is zero as n goes to 

infinity. 

So, given the series 
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Look at the limit of the non-alternating part: 

 

So, this series converges. Note that the other test dealing with negative 

numbers, the Absolute Convergence Test, would not tell us that this 

series converges. 

8.3.1.6 The Absolute Convergence Test 

If the sum of |a[n]| converges, then the sum of a[n] converges. 

 

We call this type of convergence absolute convergence. 

As an example, look at 

. 

We know that since the absolute value of sin(x) is always less than or 

equal to one, then 

 

So, by the Comparison Test, and the fact that 

 

Is a convergent p-series, we find that 

 

Converges, so 
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Converges. 

 

8.3.1.7 The Ratio Test 

 

If the limit of |a [n+1]/a[n]| is less than 1, then the series (absolutely) 

converges. If the limit is larger than one, or infinite, then the series 

diverges. 

 

 

Let's look at an example of this: 

 

Look at the ratio of consecutive terms, and find the limit. 

 

Note the use of l'Hôpital's Rule in the second-to-last step. This limit, 

being less than 1, tells us that the series converges. 

3.1.8 The Root Test 
 

If the limit of |a[n]|^ (1/n) is less than one, then the series (absolutely) 

converges. If the limit is larger than one, or infinite, then the series 

diverges. 
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Here's an example of the root test. Look at the series 

 

Find the limit of the nth root of the nth term. 

 

 

Note the use of l'Hôpital's Rule in determining the limit. Since this limit 

is less than 1, the series converges. 

Check in Progress-II 

Note: Please give solution of questions in space give below: 

Q. 1 Define Ratio Test. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..………………………………………………………………… 

Q. 2 Define Root Test. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

8.4 START OF TESTS 
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Look at your series. Treat the individual terms of the series as a sequence 

instead. Does this sequence converge to zero? If not, then the series does 

not converge. This is called the Divergence Test. If the limit is zero, then 

continue with the tests. If it's difficult to tell, then continue with the tests. 

For example, 

 

Try to Find the Form of the Series Terms 
 

Try to determine the form of the terms of the series. Pick the type that 

best seems to fit your series. 

 Type A: n never appears in a power. 

 Type B: n only appears in a power. 

 Type C: n appears in both a power and a base. 

 Type D: n! Appears. 

Some examples: 

Type A 

 

Type B 
 

Type C 

 

Type D 
 

 

No n Powers 
If some of the terms are negative, then look at the series of absolute 

values instead. If that converges, then the original will as well, because 

of the Absolute Convergence Test. Try to get rid of negative exponents, 

and treat them as fractions instead. If you have fractions inside of 

fractions, try finding common denominators and reduce to just one 

fraction. 

As an example, 
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Then use the Comparison Test, comparing with the p-series above: 

 

If there aren't any transcendental functions (like the natural logarithm, 

the tangent function, and so forth) in the term, do the following: find the 

largest power of n contained in the[n] term. If the term is a fraction, find 

the largest power of n in both the numerator and the denominator, and 

subtract the largest power in the denominator from the largest power in 

the numerator to get the largest power of n in the entire term. If 

two n terms are multiplied, add the powers. If a group of terms is inside, 

say, a cube root, divide all powers inside the cube root by three. 

The resulting highest power should be negative. If not, then find the limit 

of the terms: it probably won't be zero. If it is negative, then try the 

Comparison Test or the Limit Comparison Test with b[n] = 1/nap, 

where p is the power from above. If that doesn't work, and the term looks 

like something you can integrate, try the Integral Test. 

For instance, 

 

Has a power of 3 in the numerator, and a power of 2+2/3 in the 

denominator, so the whole fraction should compare favorably with n^ 

(1/3). Use the Limit Comparison Test, and divide the above term by n^ 

(1/3) to get 

 

Then, in order to find the limit as n goes to infinity, divide both top and 

bottom by n^3 to get 
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And then the limit is found to be 2^ (-4/3), a positive number. Since n^ 

(1/3) diverges as a series (see p-series), the original series also diverges. 

If you have an "expr" function, or a hyperbolic trig function, then write 

out the functions in terms of e, and you'll see that you do have an n in a 

power. Try those tests instead. 

If you have a logarithm, then try treating it as an extremely small power 

of n. In fact, for any nuke, with k positive, ln n < n^k for large enough n. 

So, 

 

Which is a converging p-series, so the original series converges as well. 

If you have a trigonometric function, check to see if you can find a 

pattern to the results; this is most likely if you have pi inside the trig 

function. If you just have a sine or a cosine function, try treating those as 

if they were constants; that might work, especially with a comparison test 

(for example, |sin x|<=1). 

For example, the sum of sin (pi/2*n) is really 1 + 0 + -1 + 0 + 1 + 0 + -1 

+ 0 + ... Its sequence of partial sums has no limit, so the series does not 

converge. The sum of |sin n|/n^2 has terms smaller than 1/n^2, which 

converges, so the sum of |sin n|/n^2 also converges. 

NS All Over the Place 
Change the negative terms to positive by taking the absolute value of the 

terms. If the new series converges, then so does the old one, by 

the Absolute Convergence Test. 

With an n in the power of the term, the Root Test can cancel that power 

of n, so try that. Also, the Ratio Test often can be useful in such 

circumstances. 
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For instance, whether or not the sum of 

 

Converges can be found using the Root Test: 

 

So the series diverges. 

Change the negative terms to positive by taking the absolute value of the 

terms. If the new series converges, then so does the old one, by 

the Absolute Convergence Test. 

With an n in the power of the term, the Root Test can cancel that power 

of n, so try that. Also, the Ratio Test often can be useful in such 

circumstances. 

For instance, whether or not the sum of 

 

Converges can be found using the Root Test: 

 

So the series diverges. 

None of this has helped. 

So, nothing has worked so far yet? Here are a few things to try. If you 

haven't done so yet, try checking to see if the limit of the terms is zero 

(the Divergence Test). Try splitting up a term into the sum of two 

different terms, and checking each separately, but be careful: if they both 

diverge, then the diverging parts may cancel each other out. If there is 
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subtraction, and the parts being subtracted look similar, you might check 

for a Telescoping Series. 

Still nothing? Does the series alternate between positive and negative 

terms? You might try the Alternating Series Test. And, if you haven't 

tried it yet, try the Integral Test. 

As an example, look at 

 

The "highest power" method from the "no n powers" page will work, but 

let's use the Integral Test. 

 

So, since the corresponding integral doesn't converge, the series won't 

converge either. 

n Only in the Power 
f some terms are negative, look at the series of absolute values instead. 

The Absolute Convergence Test says that if the latter series converges, 

then so does the former. 

Try to isolate the part of the term raised to the n power from the part of 

the series not raised to the n power. Consider splitting the series into two 

pieces based on this, if necessary. 

So, the sum of 3*(1/2^n) is 3 times the sum of 1/2^n. The sum of 

1/2^n converges, so 3 times is also converges. Similarly, the sum of 

3+1/2^n equals the sum of 3 + the sum of 1/2^n. Since the sum of 3 

diverges, and the sum of 1/2^n converges, the series diverges. You have 

to be careful here, though: if you get a sum of two diverging series, 

occasionally they will cancel each other out and the result will converge. 

If the power is n+1 or such, then factor out terms until you just have 

an n power. Then try to match up the term with the Geometric Series: use 
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the part raised to the n power as r, and the part not raised to the n power 

as a. If it doesn't fit exactly, see if you can use a Comparison 

Test or Limit Comparison Test. 

For instance, 

 

The sum of which converges to 4/3*(1/ (1-2/3)) = 4. 

It also may be worthwhile to try the Root Test, since taking an nth root 

will conveniently rid the term of an nth power. Also, you will often get a 

lot of cancellation using the Ratio Test. 

As an example, look at the sum of (1/3) ^ (n+2). Using the Ratio Test, 

we get 

 

So the series converges. 

ns All Over the Place 
Change the negative terms to positive by taking the absolute value of the 

terms. If the new series converges, then so does the old one, by 

the Absolute Convergence Test. 

With an n in the power of the term, the Root Test can cancel that power 

of n, so try that. Also, the Ratio Test often can be useful in such 

circumstances. 

For instance, whether or not the sum of 

 

Converges can be found using the Root Test: 



Notes  

28 

 

So the series diverges. 

Factorials 
f some terms are negative, take absolute values. The Absolute 

Convergence Test allows this: if the new series converges, then the old 

one will also. 

The Ratio Test will usually cause a lot of cancellation in these cases; 

cancellation which will rid you of most, if not all, of the factorial part. 

For instance, look at: 

 

The Ratio Test gives 

(n+1)!/(n+1)^{n+1} 

-------------- 

n!/n^n 

(n+1)! n^n 

=---------- 

n!(n+1)^{n+1} 

(n+1) n^n 

=----------- 

(n+1) (n+1)^n 

n^n/(n+1)^n = [n/(n+1)]^n --> 1/e as n->infinity 

The reason is that [(n+1)/n)]^n=[1+1/n]^n -> e as n->infinity. This is by 

definition of the exponential. 

Hence, according to the Ratio Test the original series is convergent. 
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Theorem  (Comparison Test). Let  be a convergent series of real 

nonnegative terms. If  is a sequence of complex numbers and 

 holds for all n, then  converges. 

Corollary If    converges, then    converges.  

In other words, absolute convergence implies convergence for complex 

series as well as for real series. 

Example  Show that the series  is convergent. 

Solution. We calculate .  Using the 

comparison test and the fact that  converges, we determine that 

 converges and hence, by Corollary 4.1, so 

does . 

Aside. Just for fun, we can graph some of the partial sums of this 

complex series. 

    

  The partial sums  converge to the value 
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Let b[n] be a second series. Require that all a[n] and b[n] are positive. 

If b[n] converges, and a[n]<=b[n] for all n, then a[n] also converges. If 

the sum of b[n] diverges, and a[n]>=b[n] for all n, then the sum of a[n] 

also diverges. 

 

 

 

The idea with this test is that if each term of one series is smaller than 

another, then the sum of that series must be smaller. So, if every term of 

a series is smaller than the corresponding term of a converging series, the 

smaller series must also converge. And if a smaller series diverges, the 

larger one must also diverge. 

As an example, consider the series 

. 

Compare that with a second series as follows: 

 (since n+1<2n for n>=1) . 

. 

Since this new, smaller sum diverges (it is a harmonic series), the 

original sum also diverges. 

For another example, look at 

. 
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Compare that with a second series also: 

. 

 

converges (since it is a p-series with p greater than one), so the first sum 

also converges. 

Check in Progress-III 

Note : Please give solution of questions in space give below: 

Q. 1 Define Comparison Test. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..…………………………………………………………………

……………… 

Q. 2 Show that the series  is convergent. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..………………………………………………………………………………… 

8.4.1 Examples 

Exercise 1. Find the following limits. 

1 (a). . 

Solution 1 (a). 
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Answer  . 

Solution. Method I. We have  

 

    

We can use the "squeeze theorem" for real sequences to show 

that both  and  converge 

to 0. 

 

  ,  and 

 

  ,  

 

Hence we have,    and  

. 

Therefore  . 

Solution. Method II. Use the fact 

that    iff  .  (You will be asked to prove 

this fact in Exercise 17.) 

Find the limit of the sequence of absolute values: 
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Then,    implies that  . 

We are done.   

Exercise 1. Find the following limits. 

1 (b). . 

Solution 1 (b). 

See text and/or instructor's solution manual. 

Answer  . 

Solution.  Rewrite the series as follows:  

 

   

This boils down to showing that  . 
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Method I. We have  

 

    

We can use the "squeeze theorem" for real sequences to show 

that both  and  converge to 0. 

 

  ,  and 

 

  ,  

 

Hence we have, 

  and  . 

Therefore . 

Method II.  Use the fact that    iff  .  

(You will be asked to prove this fact in Exercise 17.) 

Find the limit of the sequence of absolute values: 

 

  , 

 From Method I or Method II, we have established the fact that  

 

  . 
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Then,    implies that  . 

 

Therefore,    

We are done.   

Exercise 1. Find the following limits. 

1 (c). . 

Solution 1 (c). 

.Answer  . 

Solution.  The limit of the sequence can be computed as follows:  
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The sequence  was studied in calculus and , can 

be established by using either the comparison test or L'Hôpital's 

rule. 

We are done.   

Exercise 1. Find the following limits. 

1 (d). . 

Solution 1 (d). 

Answer  . 

Solution.  Expand the formula for the terms in the sequence

. 

 

Therefore, .  

We are done. 

Exercise 2. Show that  ,  where    is the 

principal value of the  root of  .  
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Solution.  The principal  root was introduced  

    

We are done.   

Exercise 3. Suppose that .  Show that .   

Solution. Method I.   

 

Let  be given.  Since , there exists  such that if 

 then ,  i.e.,  .   

 

But since , this implies that if   , then

.  Therefore .   

Solution. Method II.   

Let  ,  with  ,  and  

.  

Both    and    exist, and  

  ,  and 

 

  .  
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Thus,    exists,  and  .   

Therefore,   

   

Exercise 4. Suppose that the complex sequence  converges 

to .  Show that  is bounded in two ways.  

4 (a). Write  and use the fact that convergent series 

of real numbers are bounded. 

Solution.  Let  ,  with  ,  

and  .  

 

  And  . 

Since  is a convergent sequence of real numbers, there exists 

a real number  such that  for all n.  

Since  is a convergent sequence of real numbers, there exists 

a real number  such that  for all n.  

Let  .  Then  

  . 

Therefore, the sequence  is bounded.  

8.5 SUMMARY 
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In this unit we study convergence test and its examples with 

solution. We study comparison test of series. We study p-series 

and Geometric series. We study divergent test, convergence test, 

limit comparison test, alternating series test, absolute 

convergence test, and ratio test with examples. We study some 

exercise for series test.  

8.6 KEYWORD 

 BOUNDED:(of an object) rebound from a surface 

ABSOLUTE:viewed or existing independently and not in relation to 

other things; not relative or comparative 

DIVERGENCE : the scalar product of the operator del and a given 

vector, which gives a measure of the quantity of flux emanating from any 

point of the vector field or the rate of loss of mass, heat, etc., from it 

8.7 QUESTIONS FOR REVIEW 

Q. 1 Show that  .  

Q. 2 Suppose that  .  Show that  .   

Q. 3 Does    exist?  Why?  

Q. 4 Let  ,  where  .  

Q. 5 Is it possible to have  ,  but    does not 

exist? 

Q. 6 Show that, if    converges, then  .  

Q. 7 State whether the following series converge or diverge.  Justify your 

answers.  
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 (a). .  (b).  

Q. 8 If    converges,  show that  .  

8.8 SUGGESTION READING AND 

REFERENCES 

 Ayres, Frank Jr.; Mendelson, Elliott (1999). Schaum's Outline of 

Calculus (4th Ed.). New York: McGraw-Hill. ISBN 0-07-041973-6. 

 Buck, R. Creighton (1965). Advanced Calculus (2nd Ed.). New 

York: McGraw-Hill. 

 Knopp, Konrad (1956). Infinite Sequences and Series. New York: 

Dover Publications. § 3.1. ISBN 0-486-60153-6. 

 Munem, M. A.; Foulis, D. J. (1984). Calculus with Analytic 

Geometry (2nd Ed.). Worth Publishers. ISBN 0-87901-236-6. 

 Silverman, Herb (1975). Complex Variables. Houghton Mifflin 

Company. ISBN 0-395-18582-3. 

Whittaker, E. T.; Watson, G. N. (1963). A Course in Modern 

Analysis (4th Ed.). Cambridge University Press. § 2.34. ISBN 0-521-

58807 

8.9 ANSWER TO CHECK YOUR 

PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 1.2 

 2 Check in Section 1.3 

Check In Progress-II 

Answer Q. 1 Check in section 3.1.7 

  2 Check in Section 3.1.8 

Check In Progress-III 

Answer Q. 1 Check in section 4 

 2 Check in Section 4 
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UNIT 9 : ABSOLUTE AND UNIFORM 

CONVERGENCE 

STRUCTURE 

9.0 Objective 

9.1 Introduction 

9.1.1 Absolute Convergent 

9.1.2 Relation to Convergence 

9.1.3 Convergent Series 

9.1.4 Uniform Convergence 

9.2 Abel’s Convergence Theorem 

9.2.1 Abel’s Uniform Convergence Test 

9.2.2 Weiertrass M-test  

9.3 Summary 

9.4 Keyword 

9.5 Questions for review 

9.6  Suggestion Reading and References 

9.67 Answer to Check your  Progress 

 

9.0 OBJECTIVES 

 Deals with absolute convergence  

 Deals with uniform convergence 

 Study with convergent series 

 Deals with Weierstrass M-test 

 Deals with Abel’s uniform convergence test 

 

9.1 INTRODUCTION 

When we first talked about series convergence we briefly mentioned a 

stronger type of convergence but didn’t do anything with it because we 
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didn’t have any tools at our disposal that we could use to work problems 

involving it. We now have some of those tools so it’s now time to talk 

about absolute convergence in detail. 

Describes a series that converges when all terms are replaced by 

their absolute values. To see if a series converges absolutely, replace any 

subtraction in the series with addition. If the new series converges, then 

the original series converges absolutely. 

Note: Any series that converges absolutely is itself convergent. 

 

9.1.1 Absolute Convergent 

A series  is said to converge absolutely if 

the series  converges, where  denotes the absolute value. If 

a series is absolutely convergent, then the sum is independent of the 

order in which terms are summed. Furthermore, if the series is multiplied 

by another absolutely convergent series, the product series will also 

converge absolutely. 

Definition 

A series ∑an is called absolutely convergent if ∑|an| is convergent. 

If ∑an is convergent and ∑|an| is divergent we call the 

series conditionally convergent. 

We also have the following fact about absolute convergence. 

Fact 

If ∑an is absolutely convergent then it is also convergent. 

Proof 

First notice that |an| is either an or it is −an depending on its sign. This 

means that we can then say,  0≤an+|an|≤2|an| 

Now, since we are assuming that ∑|an| is convergent then ∑2|an| is also 

convergent since we can just factor the 2 out of the series and 2 times a 
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finite value will still be finite. This however allows us to use the 

Comparison Test to say that ∑(an+|an|) is also a convergent series. 

Finally, we can write, ∑an=∑(an+|an|)−∑|an| 

and so ∑an is the difference of two convergent series and so is also 

convergent. 

This fact is one of the ways in which absolute convergence is a 

―stronger‖ type of convergence. Series that are absolutely convergent are 

guaranteed to be convergent. However, series that are convergent may or 

may not be absolutely convergent. 

Let’s take a quick look at a couple of examples of absolute convergence. 

Roughly speaking there are two ways for a series to converge: As in the 

case of ∑1/n2, the individual terms get small very quickly, so that the 

sum of all of them stays finite, or, as in the case of ∑(−1)n−1/n, the terms 

don't get small fast enough (∑1/n diverges), but a mixture of positive and 

negative terms provides enough cancellation to keep the sum finite. You 

might guess from what we've seen that if the terms get small fast enough 

to do the job, then whether or not some terms are negative and some 

positive the series converges. 

9.1.2 Relation to Convergence 

If G is complete with respect to the metric d, then every absolutely 

convergent series is convergent. The proof is the same as for complex-

valued series: use the completeness to derive the Cauchy criterion for 

convergence—a series is convergent if and only if its tails can be made 

arbitrarily small in norm—and apply the triangle inequality. 

In particular, for series with values in any Banach space, absolute 

convergence implies convergence. The converse is also true: if absolute 

convergence implies convergence in a normed space, then the space is a 

Banach space. 

If a series is convergent but not absolutely convergent, it is 

called conditionally convergent. An example of a conditionally 
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convergent series is the alternating harmonic series. Many standard tests 

for divergence and convergence, most notably including the ratio test and 

the root test, demonstrate absolute convergence. This is because a power 

series is absolutely convergent on the interior of its disk of convergence. 

 

9.1.3 Convergent Series 

A series is said to be convergent if it approaches some limit (D'Angelo 

and West 2000, p. 259). 

Formally, the infinite series  is convergent if the sequence of 

partial sums 

 

(1) 

Is convergent. Conversely, a series is divergent if the sequence of partial 

sums is divergent. If  and  are convergent series, 

then  and  are convergent. If , 

then  and  both converge or both diverge. Convergence and 

divergence are unaffected by deleting a finite number of terms from the 

beginning of a series. Constant terms in the denominator of a sequence 

can usually be deleted without affecting convergence. All but the 

highest power terms in polynomials can usually be deleted in 

both numerator and denominator of a series without affecting 

convergence. 

If the series formed by taking the absolute values of its terms converges 

(in which case it is said to be absolutely convergent), then the original 

series converges. 

Conditions for convergence of a series can be determined in the Wolfram 

Language using Sum Convergence [a, n]. 

The series 

 

  

(2) 
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(3) 

both diverge by the integral test, although the latter requires 

a googolplex number of terms before the partial sums exceed 10 

(Zwillinger 1996, p. 39). In contrast, the sums 

 

(4) 

(Baxley 1992; Braden 1992; Zwillinger 1996, p. 39; Kreminski 1997; 

OEIS A115563) and 

 

(5) 

 

9.1.4 Uniform Convergence 

Definition (Uniform Convergence), The sequence  converges 

uniformly to f(z) on the set T if for every , there exists a positive 

integer  (depending only on ) such that 

 

  if , then   for all  . 

If  is the  partial sum of the series , we say that 

the series  converges uniformly to f (z) on the set T. 

A sequence of functions ,  2, 3, is said to be uniformly 

convergent to  for a set  of values of  if, for each , 

an integer  can be found such that 

 

(1) 

For  and all . 

A series  converges uniformly on  if the sequence  of partial 

sums defined by 



Notes  

46 

                                                                                                                                              

 

(2) 

Converges uniformly on . 

To test for uniform convergence, use Abel's uniform convergence test or 

the Weierstrass M-test. If individual terms  of a uniformly 

converging series are continuous, then the following conditions are 

satisfied. 

1. The series sum 

 

(3) 

Is continuous. 

2. The series may be integrated term by term 

 

(4) 

For example, a power series  is uniformly convergent on 

any closed and bounded subset inside its circle of convergence. 

3. The situation is more complicated for differentiation since uniform 

convergence of  does not tell anything about convergence 

of . Suppose that  converges for some , 

that each  is differentiable on , and 

that  converges uniformly on . 

Then  converges uniformly on  to a function , and for 

each , 
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Uniform Convergence 

  Complex functions are the key to unlocking many of the mysteries 

encountered when power series are first introduced in a calculus course. 

We begin by discussing an important property associated with power 

series-uniform convergence. 

  Recall that, for a function f(z) defined on a set T, the sequence of 

functions  converges to the function f(z) at the point  

provided that  . Thus, for the particular point , we 

know that for each , there exists a positive integer  (which 

depends on both  ) such that 

 

  if , then .  

  If  is the  partial sum of the series , 

Statement becomes  

  if , then .  

  For a given value of , the integer  needed to satisfy 

Statement often depends on our choice of . This is not the case if the 

sequence  converges uniformly. For a uniformly convergent 

sequence, it is possible to find an integer  (depending only on ) that 

guarantees Statement no matter what value for  we pick. In other 

words, if n is large enough, the function  is uniformly close to the 

function f(z) for all . Formally, we have the following definition. 

Example . The sequence  converges uniformly to the 

function  on the entire complex plane because for any , 

statement is satisfied for all z for , where  is any integer greater 

than . We leave the details of showing this result as an exercise. 

 A good example of a sequence of functions that does not converge 

uniformly is the sequence of partial sums comprising the geometric 
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9.2 ABEL'S CONVERGENCE THEOREM 

Given a Taylor series 

 

(1) 

Where the complex number  has been written in the polar form , 

examine the real and imaginary parts 

 

(2) 

 

(3) 

Abel's theorem states that, if  and  are convergent, then 

 

(4) 

Stated in words, Abel's theorem guarantees that, if a real power 

series converges for some positive value of the argument, 

the domain of uniform convergence extends at least up to and including 

this point. Furthermore, the continuity of the sum function extends at 

least up to and including this point. 

9.2.1 Abel's Uniform Convergence Test 

Let  be a sequence of functions. If 

1.  Can be written , 

2.  is convergent, 

3.  Is a monotonic decreasing sequence (i.e., ) for all , 

and 

4.  Is bounded in some region (i.e.,  for all ) 

Then, for all , the series  converges uniformly. 
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9.2.2 Weierstrass M-Test 

Let  be a series of functions all defined for a set  of values of . If there is 
a convergent series of constants 

 

Such that 

 

For all , then the series exhibits absolute convergence for each  as well as uniform 

convergence in . 

Exercise 1. This exercise relates to Below Figure.  

    

 Figure  The geometric series does not converge uniformly on 

 for , is the graph of  above or below

?  Explain. 

Solution. By definition,    so 

that  .   

 

It appears from the graph that the value of the upper function  (in 

red) is approximately ,  

 

(certainly larger than , so the graph of  must be above the graph 

of  (in blue).  
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Thus, for , the graph of    is 

above  . 

  

  

 The graphs of    and  . 

  We will ask for more details about this situation in Exercise 1 (b). 

1 (b). Is the index n in  odd or even? Explain. 

Solution 1 (b). 

See text and/or instructor's solution manual. 

Answer.  The index n in  is odd, i.e. .  

Solution.  The sum of the geometric series is 

 

  .  

For positive values of x in the interval  we will have 

 

  .   

  But for x in the interval  the sign of  will depend on 

whether n is even or odd. 
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When   and  we have  and this implies that 

 

  .   

   

When  and  we have  and this implies that   

 

  .  

Since the graph of  shows   for .  

 

Therefore, we conclude that index n in  is odd, i.e. .  

    

 The graphs of   and  . 

1 (c). Assuming that the graph is accurate to scale, what is the value 

of n in ? Explain. 

Solution 1 (c). 

Solution.  From the graph, we approximate

.  Using  ,  

 

we observe that    and deduce that .  
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  The graphs of    and  . 

  It is revealed that  . 

Exercise 2. Prove that the following series converge uniformly on the 

sets indicated.  

2 (a).   Converge uniformly on  .  

Solution 2 (a). 

Solution.  Here  

,  and for    we have 

 

  ,   

 

the series   

 

  ,  

 

is known to be convergent (because  is convergent when ).  

 

Therefore, by the Weierstrass M-test, the series    converges 

uniformly on   
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Exercise 2. Prove that the following series converge uniformly on the 

sets indicated.  

2 (b).   Converge uniformly on  .   

Solution 2 (b). 

Solution.  Here the terms in the series are .  

 

If , then we have .  Recall formula (1-24) in Section 

1.3.  

 

(1-24)  .  

 

In formula (1-24) we set  and  and get  

 

   . 

For  we have 

 

  ,   

 

the series   

 

    

 

is convergent. 

Therefore, by the Weierstrass M-test, the 

series    converges uniformly on  .   
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Check in Progress-II 

Note: Please give solution of questions in space give below: 

Q. 1 Prove that the following series converge uniformly on the sets 

indicated.  

   Converge uniformly on  .  

Solution: 

……………………………………………………………………………

……………………………………………………………………………

………..………………………………………………………………… 

Q. 2 Define Abel’s Convergence Theorem. 

 

Solution: 

……………………………………………………………………………

………………………………………………………………………….…

…………………………………………………………………………… 

Exercise 2. Prove that the following series converge uniformly on the 

sets indicated.  

2 (c).   Converge uniformly on  

,  where .  

Solution 2 (c). 

Solution.  Here , and for a fixed , choose  

large so that  for all .  

 

Then, for all , and all , we have   

 

  ,  
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 so that  

  . 

  Recall formula (1-24) in Section 1.3.  

 

(1-24)  .  

 

In formula (1-24) we set  and  and get  

 

  . 

 

Now use this, together with   and obtain 

 

  .  

Therefore, it now follows that  

 

     

 For  and all , we have   

 

  .   

The series   

    

is known to be convergent (it is a geometric series).  
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Therefore, by the Weierstrass M-test, the series    converges 

uniformly on  ,  where .  

Exercise 3. Show that    does not converge 

uniformly to     

On the set     

Hint. Given  and a positive integer n, let .  

Solution 3. 

Solution.  Let . Then for every positive integer n, if

, then  

 

    

Thus Statement is satisfied: 

 

 There exists an , such that for all positive integers N, 

  there is some  and some  

  such that .  
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Therefore,  does not converge uniformly to 

 on .  

We are done.   

Aside. For the real function  on the interval  and 

the partial sums , 

 

it is known that the partial sums of  at the point  exhibit the 

behavior 

 

   

 

Hence for the two consecutive partial sums  it is 

easy to locate points , 

 

such that . 

 

Therefore,  does not converge uniformly to  on 

the interval .  

Exercise 4. Why can't we use the arguments of Theorem 7.2 to prove 

that the geometric series  converges uniformly on all of ?  

Solution.  The crucial step in the proof of Theorem 7.2 is the statement, 

"Moreover, for all  it is clear that  

 

  .  

 

We write   and here we have  for all n, and
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.  

 

If we set , then   does not converge. 

Exercise 5. Consider the function , where

.  

5 (a). Show that  converges uniformly on the set

.  

Solution.  For , we have   

 

     

Since , we have  ,  so that  .  

 

Thus, for  we have 

 

  ,   

the series   

 

  ,  

is known to be convergent (because  is convergent when ).  
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Therefore, by the Weierstrass M-test, the series  converges 

uniformly on .  

We are done.   

9.3 SUMMARY  

We study in this unit abel’s convergence test and its examples. We study 

uniform convergence test and its examples .We study M-Test and its 

examples. We study convergent series and relation to convergence. We 

study Abel’s Uniform convergence series. We study A series  is 

said to converge absolutely if the series  converges, 

where  denotes the absolute value. If a series is absolutely convergent, 

then the sum is independent of the order in which terms are summed. 

Furthermore, if the series is multiplied by another absolutely convergent 

series, the product series will also converge absolutely.  

9.4 KEYWORD 

Absolutely: with no qualification, restriction, or limitation; totally. 

Uniform: remaining the same in all cases and at all times; unchanging 

in form or character 

Abel’s Test: Abel's test (also known as Abel's criterion) is a method 

of testing for the convergence of an infinite series. The test is named 

after mathematician Niels Henrik Abel. ... Abel's uniform 

convergence test is a criterion for the uniform convergence of a series of 

functions dependent on parameters. 

9.5 QUESTIONS FOR REVIEW 

Q. 1 Consider the function , where .  

Then Show that  converges uniformly on the set

.  
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Q. 2 Show by example that it is not necessarily the case that 

 converges uniformly to  on the set T.  

Q. 3 suppose that the sequences of functions  and  

converge uniformly on the set T.  

Then Show that the sequence  converges uniformly on 

the set T.  

Q. 4   converge uniformly on  ,  where

. 

Q. 5 why can't we use the arguments of Theorem 7.2 to prove that the 

geometric series  converges uniformly on all of ?  

 

9.6 SUGGESTION READING AND 

REFERENCES 
 Bromwich, T. J. I'A. and MacRobert, T. M. "Absolute 

Convergence." Ch. 4 is An Introduction to the Theory of Infinite 

Series, 3rd ed. New York: Chelsea, pp. 69-77, 1991. 

 Jeffreys, H. and Jeffreys, B. S. "Absolute Convergence." §1.051 

in Methods of Mathematical Physics, 3rd ed. Cambridge, 

England: Cambridge University Press, p. 16, 1988. 

 Rudin, Walter (1976). Principles of Mathematical Analysis. New 

York: McGraw-Hill. pp. 71–72. ISBN 0-07-054235-X. 

 Megginson, Robert E. (1998), An introduction to Banach space 

theory, Graduate Texts in Mathematics, 183, New York: 

Springer-Verlag, p. 20, ISBN 0-387-98431-3 (Theorem 1.3.9) 

 Dvoretzky, A.; Rogers, C. A. (1950), "Absolute and 

unconditional convergence in normed linear spaces", Proc. Natl. 
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 Walter Rudin, Principles of Mathematical Analysis (McGraw-

Hill: New York, 1964). 

9.7 ANSWER TO CHECK YOUR 

PROGRESS 

 Check in Progress-I 

Answer Q. 1 Check in Section 1.5 

 2 Check in Section 1.5 

 Check In Progress-II 

Answer Q. 1 Check in section 2 

   2 Check in Section 2.2 
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UNIT 10 TOPIC: FACTORIZATION IN 

INTEGRAL FUNCTION 

STRUCTURE 

10.0 Objective 

10.1 Introduction 

10.1.1 Factorization of an Integral Function 

10.1.2 Construction of an Integral Function with Given Zeros 

10.2 Weierstrass Primary Factors 

10.2.1 Infinite Product Theorem 

10.2.2 Approximation of functions 

10.2.3 Preparation theorem 

10.3 Complex Integrals 

10.3.1 Euler’s Factorization Method 

10.4 Stone–Weierstrass theorem 

10.5 Summary 

10.6 Keyword 

10.7 Questions for review 

10.8 Suggestion Reading and References 

10.9 Answer to check  your  progress 

10.0 OBJECTIVE 

 Deals with Factorization theorem 

 Deals with Factorization of an Integral Function  

 Deals with Weierstrass factorization theorem 

 Deals with approximation of a function  

 Deals with complex integral  
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10.1 INTRODUCTION 

In mathematics, factorization (or factorisation, see English spelling 

differences) or factoring consists of writing a number or 

another mathematical object as a product of several factors, usually 

smaller or simpler objects of the same kind. For example, 3 × 5 is a 

factorization of the integer 15, and (x – 2)(x + 2) is a factorization of 

the polynomial x
2
 – 4. 

Factorization is not usually considered meaningful within number 

systems possessing division, such as the real or complex numbers, since 

any x can be trivially written as (xy)x 1/y whenever y is not zero. 

However, a meaningful factorization for a rational number or a rational 

function can be obtained by writing it in lowest terms and separately 

factoring its numerator and denominator. 

Factorization was first considered by ancient Greek mathematicians in 

the case of integers. They proved the fundamental theorem of arithmetic, 

which asserts that every positive integer may be factored into a product 

of prime numbers, which cannot be further factored into integers greater 

than 1. Moreover, this factorization is unique up to the order of the 

factors. Although integer factorization is a sort of inverse to 

multiplication, it is much more difficult algorithmically, a fact which is 

exploited in the RSA cryptosystem to implement public-key 

cryptography. 

Polynomial factorization has also been studied for centuries. In 

elementary algebra, factoring a polynomial reduces the problem of 

finding its roots to finding the roots of the factors. Polynomials with 

coefficients in the integers or in a field possess the unique factorization 

property, a version of the fundamental theorem of arithmetic with prime 

numbers replaced by irreducible polynomials. In particular, a univariate 

polynomial with complex coefficients admits a unique (up to ordering) 

factorization into linear polynomials: this is a version of the fundamental 

theorem of algebra. In this case, the factorization can be done with root-

finding algorithms. The case of polynomials with integer coefficients is 
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fundamental for computer algebra. There are efficient 

computer algorithms for computing (complete) factorizations within the 

ring of polynomials with rational number coefficients (see factorization 

of polynomials). 

A commutative ring possessing the unique factorization property is 

called a unique factorization domain. There are number systems, such as 

certain rings of algebraic integers, which are not unique factorization 

domains. However, rings of algebraic integers satisfy the weaker 

property of Dedekind domains: ideals factor uniquely into prime ideals. 

Factorization may also refer to more general decompositions of a 

mathematical object into the product of smaller or simpler objects. For 

example, every function may be factored into the composition of 

a surjective function with an injective function. Matrices possess many 

kinds of matrix factorizations. For example, every matrix has a 

unique LUP factorization as a product of a lower triangular matrix L with 

all diagonal entries equal to one, an upper triangular matrix U, and 

a permutation matrix P; this is a matrix formulation of Gaussian 

elimination. 

 

10.1.1 Factorization of an Integral Function 
 

We know that a function which is regular in every finite region of the z-

plane is called an integral function or entire function. In other words, 

integral function is an analytic function which has no singularity except 

at infinity.  

e.g.    = 1 + z +    + … 

The simplest integral functions are polynomials. We know that a 

polynomial can be uniquely expressed as the product of linear factors in 

the form : f(z)= f(0) −  −  − 1 2 n z z ... 1 z z 1 z z 1 where z1, z2,…, zn 

are the zeros of the polynomial. An integral function which is not a 

polynomial may have an infinity of zeros zn and the product π  − n z z 1 

taken over these zeros may be divergent. So, an integral function cannot 
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be always factorized in the same way as a polynomial and thus we have 

to consider less simple factors than − n z z 1 . We observe that (a) An 

integral function may have no zero e.g. e z . (b) An integral function may 

have finite number of zeroes e.g. polynomials of finite degree. (c) An 

integral function may have infinite number of zeroes. e.g. sin z, cos z. 

 

We know that a function which is regular in every finite region of the z-

plane is called an 

Integral function or entire function. In other words, integral function is 

an analytic function 

which has no singularity except at infinity. 

e.g.      = 1 + z +        + … 

The simplest integral functions are polynomials. We know that a 

polynomial can be uniquely 

expressed as the product of linear factors in the form: 

 

f(z) = f(0)(1 - 
 

  
) (1 - 

 

  
)………………………(1 - 

 

  
) 

where z1, z2,…, zn are the zeros of the polynomial. 

An integral function which is not a polynomial may have an infinity of 

zeros zn and the product 

π(1 - 
 

  
) taken over these zeros may be divergent. 

So, a integral function cannot be always factorized in the same way as a 

polynomial and thus we 

have to consider less simple factors than (1 - 
 

  
). We observe that 

(a) An integral function may have no zero e.g.   . 

(b) An integral function may have finite number of zeroes e.g. 

polynomials of finite degree. 

(c) An integral function may have infinite number of zeroes. e.g. sin z, 

cos z. 

 

Theorem : The most general integral function with no zero is the form 

eg(z), where g(z) is 

itself an integral function. 
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Proof : Let f(z) be an integral function with no zero, 

an integral function and 

so is 
      

    
 

 

Let F(z) = ∫
        

    

 

  
 where the integral is taken along any path from 

fixed point z0 to a point z. 

Thus f(z) = [log f(w) zzo ] = log f(z) log f(z0)  

⇾ log f(z) = F(z) + log f(z0) 

⇾  f(z) = exp [log f(z0) + F(z)] 

  =      , where g(z) = log f(z0) + F(z) is itself an integral function. 

Hence the result. 

 

10.1.2 Construction of an Integral Function with 

Given Zeros 
 

If f(z) is an integral function 

with only a finite number of zeros, say z1, z1,..,zn, then the function 

    

                            
 

is an integral function with no zeros. Also we know that the most general 

form of an integral 

function is        where g(z) is an integral function. Thus, we put 

 

    

                            
 =       

 

⇾ f(z) =                               
     

If, however, f(z) is an integral function with an infinite number of zeros, 

then the only limit point 

of the sequence of zeros, z1, z2, …,zn,… is the point at infinity. To 

determine an integral 

function f(z) with an infinity of zeros, we have an important theorem due 

to Weierstrass. 
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10.2 WEIERSTRASS PRIMARY FACTORS 

In mathematics, and particularly in the field of complex analysis, 

the Weierstrass factorization theorem asserts that every entire 

function can be represented as a (possibly infinite) product involving 

its zeroes. The theorem may be viewed as an extension of 

the fundamental theorem of algebra, which asserts that every polynomial 

may be factored into linear factors, one for each root. 

The theorem, which is named for Karl Weierstrass, is closely related to a 

second result that every sequence tending to infinity has an associated 

entire function with zeroes at precisely the points of that sequence. 

A generalization of the theorem extends it to meromorphic functions and 

allows one to consider a given meromorphic function as a product of 

three factors: terms depending on the function's zeros and poles, and an 

associated non-zero holomorphic function 

 

 

The expressions E0(z) = 1 z 

Ep(z) = (1 z) exp(z + 
  

 
………………….. 

  

 
) , p ≥ 1 

are called Weierstrass primary factors. Each primary factor is an integral function which 

has 

only a simple zero at z = 1. Thus, Ep(z/a) has a simple zero at z = a and no other zero. 

The behavior of Ep(z) as z 0, depends upon p, since for | z | < 1, we have 

 

Ep(z) = exp[log (1 - z) + (z + 
  

 
………………….. 

  

 
) ] 

= exp [( - z - 
  

 
………………….- 

  

 
  

    

   
  

    

   
)+ (z + 

  

 
………………….. 

  

 
)] 

= exp [  
    

   
  

    

   
 ] = exp [- ∑    

        ] 

 

log Ep(z) =   
    

   
  

    

   
 

Hence if K > 1 and | z | K1 , then 
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| log Ep(z) | | z |p+1 + | z |p+2 + … 

= | z |p+1(1 + | z | + | z |2 + ….) 

= |z|p+1 (1 + 1/K + 1/            ) 

= K/K-1 |z|p+1 

This inequality helps in determining the convergence of a product of 

primary factors. In 

particular, when | z | 1/2 , then 

|log Ep(z) | 2 | z |p+1 ………………………. 

 

10.2.1 Infinite product theorem 

Weierstrass' infinite product theorem [1]: For any given sequence of 

points in the complex plane , 

 

(1) 

 

there exists an entire function with zeros at the points  of this 

sequence and only at these points. This function may be constructed as 

a canonical product: 

 

(2) 

where  is the multiplicity of zero in the sequence (1), and 

 

The multipliers 

 

are called Weierstrass prime multipliers or elementary factors. The 

exponents  are chosen so as to ensure the convergence of the product 

(2); for instance, the choice  ensures the convergence of (2) for 

any sequence of the form (1). 
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It also follows from this theorem that any entire function  with 

zeros (1) has the form 

 

where  is the canonical product (2) and  is an entire function 

(see also Hadamard theorem on entire functions). 

Weierstrass' infinite product theorem can be generalized to the case of an 

arbitrary domain : Whatever a sequence of 

points  without limit points in , there exists a 

holomorphic function  in  with zeros at the points  and only at 

these points. 

The part of the theorem concerning the existence of an entire function 

with arbitrarily specified zeros may be generalized to functions of several 

complex variables as follows: Let each point  of the complex space

, , be brought into correspondence with one of its 

neighborhoods  and with a function  which is holomorphic in 

. Moreover, suppose this is done in such a way that if the 

intersection  of the neighborhoods of the 

points  is non-empty, then the fraction  is a 

holomorphic function in . Under these conditions there exists 

an entire function  in  such that the fraction  is a holomorphic 

function at every point . This theorem is known as Cousin's 

second theorem. 

10.2.2 Approximation of functions 

Weierstrass' theorem on the approximation of functions: For any 

continuous real-valued function  on the interval  there exists a 

sequence of algebraic polynomials  which converges 

uniformly on  to the function ; established by K. Weierstrass . 

Similar results are valid for all spaces . The Jackson theorem is 

a strengthening of this theorem. 

The theorem is also valid for real-valued continuous -periodic 

functions and trigonometric polynomials, e.g. for real-valued functions 

which are continuous on a bounded closed domain in an -dimensional 



Notes  

70 

                                                                                                                                              

space, or for polynomials in  variables. For generalizations, see Stone–

Weierstrass theorem. For the approximation of functions of a complex 

variable by polynomials 

 

10.2.3 Preparation theorem 

Weierstrass' preparation theorem. A theorem obtained and originally 

formulated by K. Weierstrass in 1860 as a preparation lemma, used in the 

proofs of the existence and analytic nature of the implicit function of a 

complex variable defined by an equation  whose left-hand 

side is a holomorphic function of two complex variables. This theorem 

generalizes the following important property of holomorphic functions of 

one complex variable to functions of several complex variables: 

If  is a holomorphic function of  in a neighborhood of the 

coordinate origin with , , then it may be represented 

in the form , where  is the multiplicity of vanishing 

of  at the coordinate origin, , while the holomorphic 

function  is non-zero in a certain neighborhood of the origin. 

The formulation of the Weierstrass preparation theorem for functions 

of  complex variables, . Let 

 

Be a holomorphic function of  in the polydisc 

 

And let 

 

Then, in some polydisc 

 

the function  can be represented in the form 

 

 

Where  is the multiplicity of vanishing of the function 
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At the coordinate origin, ; the functions  are 

holomorphic in the polydisc 

 

 

The function  is holomorphic and does not vanish in . The 

functions ,  and  are uniquely 

determined by the conditions of the theorem. 

If the formulation is suitably modified, the coordinate origin may be 

replaced by any point  of the complex space . It 

follows from the Weierstrass preparation theorem that for , as 

distinct from the case of one complex variable, every neighborhood of a 

zero of a holomorphic function contains an infinite set of other zeros of 

this function. 

Weierstrass' preparation theorem is purely algebraic, and may be 

formulated for formal power series. Let  be the ring of 

formal power series in the variables  with coefficients in the 

field of complex numbers ; let  be a series of this ring whose terms 

have lowest possible degree , and assume that a term of the 

form , , exists. The series  can then be represented as 

 

Where  are series in  whose constant terms 

are zero, and  is a series in  with non-zero constant 

term. The formal power series  and  are uniquely determined 

by . 

A meaning which is sometimes given to the theorem is the following 

division theorem: Let the series 

 

Satisfy the conditions just specified, and let  be an arbitrary series in

. Then there exists a series 

 

And series 
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Which satisfy the following equation: 

 

Weierstrass' preparation theorem also applies to rings of formally 

bounded series. It provides a method of inductive transition, e.g. 

from  to . It is possible to establish 

certain properties of the rings  and  in this 

way, such as being Noetherian and having the unique factorization 

property. There exists a generalization of this theorem to differentiable 

functions 

 

Check in Progress-I 

Note: Please give solution of questions in space give below: 

Q. 1 Define Preparation Theorem. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define factorization of integral function. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

 

10.3 COMPLEX INTEGRALS 

We saw how the derivative of a complex function is defined. We now 

turn our attention to the problem of integrating complex functions. We 

will find that integrals of analytic functions are well behaved and that 

many properties from calculus carry over to the complex case.  
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  We introduce the integral of a complex function by defining the integral 

of a complex-valued function of a real variable. 

Definition (Definite Integral of a Complex Integrand). Let 

 where u (t) and v (t) are real-valued functions of 

the real variable t for  . Then 

 

 .  

  

  We generally evaluate integrals of this type by finding the 

antiderivatives of u (t) and v (t) and evaluating the definite integrals on 

the right side of Equation. That is, if  and

, we have  

 

  

 

Example. Show that .  

Solution. We write the integrand in terms of its real and imaginary parts, 

i.e.,  . Here,  

and . The integrals of u(t) and v(t) are  

 

  ,  and  

 

  .  

 

Hence, by Definition,  
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Example  Show that .  

Solution. We use the method suggested by Definitions  

 

    

We can evaluate each of the integrals via integration by parts. For 

example,  

 

     

Adding  to both sides of this equation and then dividing 

by 2 gives . Likewise,

. Therefore,  
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Complex integrals have properties that are similar to those of real 

integrals. We now trace through several commonalities. Let 

 and  be continuous on

. 

Using Definition, we can easily show that the integral of their sum is the 

sum of their integrals, that is 

 

  .  

If we divide the interval  into  and  and 

integrate f (t) over these subintervals, then we get  

 

  .  

Similarly, if  denotes a complex constant, then 

 

  .  

If the limits of integration are reversed, then 

 

  .  

The integral of the product f (t) g (t) becomes 

 

   

Example  Let us verify property. We start by writing 
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Using Definition, we write the left side of Equation as  

 

    

 

which is equivalent to  

 

     

 

Therefore,  

10.3.1 Euler's Factorization Method 

We derive the evaluations of certain integrals of Euler type involving 

generalized hypergeometric series. Further, we establish a theorem on 

extended beta function, which provides evaluation of certain integrals in 

terms of extended beta function and certain special polynomials. The 

possibility of extending some of the derived results to multivariable case 

is also investigated. 

A factorization algorithm which works by expressing  as a quadratic 

form in two different ways. Then 

 

(1) 
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So 

 

(2) 

 

(3) 

Let  be the greatest common divisor of  and  so 

   

(4) 

   

(5) 

   

(6) 

(Where  denotes the greatest common divisor of  and ), and 

 

(7) 

But since ,  and 

 

(8) 

Which gives 

 

(9) 

So we have 

 

 

 

(10) 

  

 

(11) 

  

 

(12) 

  

 

(13) 

  

 

(14) 

   

  

Check in Progress-II 

Note: Please give solution of questions in space give below: 

Q. 1 Define complex integral. 
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Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define Euler’s factorization method. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

10. 4 STONE–WEIERSTRASS THEOREM 

A broad generalization of the classical Weierstrass theorem on the 

approximation of functions, due to M.H. Stone (1937). Let C(X) be the 

ring of continuous functions on a compactum X with the topology of 

uniform convergence, i.e. the topology generated by the norm 

∥f∥=maxx∈X|f(x)|,f∈C(X), 

and let C0⊆C(X) be a subring containing all constants and separating the 

points of X, i.e. for any two different points x1,x2∈X1,there exists a 

function f∈C0 for which f(x1)≠f(x2). Then [C0]=C(X), i.e. every 

continuous function on X is the limit of a uniformly converging sequence 

of functions in C0. 

 

Uniformly convergent series of analytic functions 

Weierstrass' theorem on uniformly convergent series of analytic 

functions: If the terms of a series 

 

(*) 

Which converges uniformly on compacta inside a domain  of the 

complex plane , are analytic functions in , then the sum  is an 

analytic function in . Moreover, the series 
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Obtained by  successive term-by-term differentiations of the series (*), 

for any , also converges uniformly on compacta inside  towards the 

derivative  of the sum of the series (*). This theorem has been 

generalized to series of analytic functions of several complex variables 

converging uniformly on compacta inside a domain  of the complex 

space ,  and the series of partial derivatives of a fixed order of the 

terms of the series (*) converges uniformly to the respective partial 

derivative of the sum of the series: 

 

 

 

Weierstrass' theorem on uniform convergence on the boundary of a 

domain: If the terms of a series 

 

are continuous in a closed bounded domain  of the complex 

plane  and are analytic in , then uniform convergence of this series 

on the boundary of the domain implies that it converges uniformly on the 

closed domain . 

This property of series of analytic functions is also applicable to analytic 

and harmonic functions defined, respectively, in a domain of the 

complex space ,  or in the Euclidean space , . As a 

general rule it remains valid in all situations in which the maximum-

modulus principle is applicable. 

The polynomial 
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Which occurs in the Weierstrass preparation theorem, is called a 

Weierstrass polynomial of degree  in . 

The analogue of the Weierstrass preparation theorem for differentiable 

functions is variously known as the differentiable preparation theorem, 

the Malgrange preparation theorem or the Malgrange–Mather preparation 

theorem. Let  be a smooth real-valued function on some neighborhood 

of  in  and let  with  and  smooth 

near  in . Then the Malgrange preparation theorem says that there 

exists a smooth function  near zero such 

that  for suitable smooth , and 

the Mather division theorem says that for any 

smooth  near  in  there exist smooth 

functions  and  on  near  such 

that  with . For more sophisticated 

versions of the differentiable preparation and division theorems, cf. [a2]–

[a4]. 

An important application is the differentiable symmetric function 

theorem (differentiable Newton theorem), which says that a germ  of a 

symmetric differentiable function of  in  can be written as a 

germ of a differentiable function in the elementary symmetric 

functions , , [a7], [a8]. 

There exist also -adic analogues of the preparation and division 

theorems. Let  be a complete non-Archimedean normed field (cf. Norm 

on a field).  is the algebra of power 

series , , 

, , such that  as 

, . The norm on  is defined 

by . The subring  consists of 

all  with  and  is the ideal of 

all  with . Let  be the residue 
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ring , and let  be the quotient mapping. 

Then , where  is the residue field of . An 

element  with  is called regular in  of 

degree  if  is of the 

form  with  and 

. Note that  is 

naturally a subalgebra of . The -adic Weierstrass preparation and 

division theorem now says: i) (division) Let  be regular of 

degree  in  and let . Then there exist unique 

elements  and , , such 

that  and, moreover, , 

where ; ii) (preparation) Let  be of norm , 

then there exists a -automorphism of  such that  is regular 

in . 

 

10.5 SUMMARY 

In this unit we study Weierstrass preparation theorem and its proof with 

examples. We study Factorization of an Integral Function and its proof. 

We study infinite product theorem. We study Uniformly convergent 

series of analytic functions and its proof. We study comples integral and 

its properties with examples. We study Euler’s factorization method.  

 

 

10.6 KEYWORD 

UNIFORMLY : With equal space between each or in equal 

amounts; evenly 

MODLUS: A constant factor or ratio 
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FACTORIZATION: When you break a number down into smaller 

numbers that, multiplied together, give you that original number. When 

you split a number into its factors or divisors, that's factorization. 

 

10.7 QUESTIONS FOR REVIEW 

Q. 1 The most general integral function with no zero is the form      , 

where g (z) is itself an integral function 

Q. 2 If z1, z2,…,zn,… be any sequence of numbers whose only limit 

point is the 

point at infinity, then it is possible to construct an integral function which 

vanishes at each of the points zn and nowhere else. 

Q. 3 If f(z) is an integral function and f(0) ¹ 0, then f(z) = f(0) P(z)      , 

where P(z) 

is the product of primary factors and g(z) is an integral function 

Q. 4 Find .  

Q. 5 Find .  
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10.9 ANSWER TO CHECK YOUR 

PROGRESS 

   

 Check In Progress-I 

Answer Q. 1 Check in Section 2.3 

 2 Check in Section 1.2 

   

Check In Progress-II 

Answer Q. 1 Check in section 3 

   2 Check in Section 3.1 
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UNIT 11 TOPIC: CAUCHY’S 

INTEGRAL FUNCTION 

STRUCTURE 

11.0 Objective 

11.1 Introduction 

11.1.1 Cauchy’s Integral Formula 

11.2 Sokhotskii Formulas 

11.3 Leibniz Integral Rule 

11.3.1 Cauchy's Integral Formula for Derivatives 

11.4 Fundamental Theorem of Integration 

11.4.1 Indefinite and Definite Integral 

11.5 Summary 

11.6 Keyword 

11.7 Questions for review 

11.8  Suggestion Reading and References 

11.9 Answer to check your Progress 

 

11.0 OBJECTIVES 

 Deals with Cauchy’s Integral Formula with its statement and 

proof 

 Deals with non-Soviet literature Plemelj formulas 

 Deals with boundary properties with analytic function 

 Deals with Cauchy integral formula for derivatives 

 Deals with Leibniz’s Integral rule 

 

11.1 INTRODUCTION 
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In mathematics, Cauchy's integral formula, named after Augustin-

Louis Cauchy, is a central statement in complex analysis. It expresses the 

fact that a holomorphic function defined on a disk is completely 

determined by its values on the boundary of the disk, and it provides 

integral formulas for all derivatives of a holomorphic function. Cauchy's 

formula shows that, in complex analysis, "differentiation is equivalent to 

integration": complex differentiation, like integration, behaves well 

under uniform limits – a result denied in real analysis. 

A Cauchy integral is a definite integral of a continuous function of one 

real variable. Let  be a continuous function on an interval  and 

let , ,

. The limit 

 

is called the definite integral in Cauchy's sense of  over  and is 

denoted by 

 

The Cauchy integral is a particular case of the Riemann integral. 

 

11.2 CAUCHY'S INTEGRAL FORMULA 

A Cauchy integral is an integral with the Cauchy kernel, 

 

expressing the values of a regular analytic function  in the interior 

of a contour  in terms of its values on . More precisely: Let  be a 

regular analytic function of the complex variable  in a domain  and 

let  be a closed piecewise-smooth Jordan curve lying in  together 

with its interior ; it is assumed that  is described in the counter-

clockwise sense. Then one has the following formula, which is of 
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fundamental importance in the theory of analytic functions of one 

complex variable and which is known as the Cauchy integral formula: 

 

(1) 

The integral on the right of (1) is also called a Cauchy integral. 

Apparently, the Cauchy integral first appeared, in certain special cases, in 

the work of A.L. Cauchy [1]. 

 

Cauchy's integral formula states that 

 

(1) 

Where the integral is a contour integral along the contour  enclosing the 

point . 

It can be derived by considering the contour integral 

 

(2) 

defining a path  as an infinitesimal counterclockwise circle around the 

point , and defining the path  as an arbitrary loop with a cut line (on 

which the forward and reverse contributions cancel each other out) so as 

to go around . The total path is then 

 

(3) 

so 
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(4) 

From the Cauchy integral theorem, the contour integral along any path 

not enclosing a pole is 0. Therefore, the first term in the above equation 

is 0 since  does not enclose the pole, and we are left with 

 

(5) 

Now, let , so . Then 

 

 

 

(6) 

  

 

(7) 

But we are free to allow the radius  to shrink to 0, so 

 

 

 

(8) 

  

 

(9) 

  

 

(10) 

   

(11) 

Giving (1). 

If multiple loops are made around the point , then equation (11) 

becomes 

 

(12) 

Where  is the contour winding number? 

A similar formula holds for the derivatives of , 
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(13) 

  

 

(14) 

  

 

(15) 

  

 

(16) 

  

 

(17) 

Iterating again, 

 

(18) 

Continuing the process and adding the contour winding number , 

 

 

Cauchy integrals are thus characterized by two conditions: 1) they are 

evaluated along a closed, smooth (or, at least, piecewise-smooth) curve

; and 2) their integrands have the form 

 

Where  and  is a regular analytic function on  and in the 

interior of . If  (the complement to ) in the Cauchy integral, 

i.e. if  lies outside , then, provided that the conditions 1) and 2) 

remain valid, 

 

(2) 

In particular, if  is the circle of radius  centered at a point , i.e. 
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then (1) implies that 

 

i.e. the value of  at any point  is equal to the arithmetic 

average of its values on any sufficiently small circle  centered at 

. Formula (1) enables one to prove all other elementary properties of 

analytic functions. 

On the other hand, if  is a regular analytic function in the infinite 

domain  (the exterior of the closed curve ) and on , and if one 

defines 

 

then the following formula, known as the Cauchy integral formula for an 

infinite domain, is valid: 

 

Now let  be some (not necessarily closed) piecewise-smooth curve in 

the finite plane, , let  be a continuous complex function 

on  and let  be a point not on . The term integral of Cauchy type is 

applied to the following generalization of the Cauchy integral: 

 

(3) 

The function  is called the density of the integral of Cauchy type. 

Elementary properties of integrals of Cauchy type are: 

1)  is a regular analytic function of  in any domain not containing 

points of . 

2) The derivatives  are given by the formulas 
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3)  is regular at infinity, with 

,  as . 

From the point of view of the general theory of analytic functions and its 

applications to mechanics and physics, it is of fundamental importance to 

consider the existence of boundary values of an integral of Cauchy type 

as one approaches , and to find analytic expressions for these values. 

The Cauchy integral (1) is equal to  everywhere in the interior 

of  and vanishes identically outside . Therefore, when an integral of 

Cauchy type (3) reduces to a Cauchy integral, i.e. when the conditions 1) 

and 2) are satisfied, then, as  is approached from the left (i.e. from its 

interior), the function  has boundary values , 

and if these values are assumed on  it is continuous from the left 

on  at each point ; as  is approached from the right (i.e. from 

its exterior), then  has boundary values zero, i.e. , 

and if these values are assumed on  it is continuous from the right 

on  at each point . Thus, for a Cauchy integral 

For an integral of Cauchy type of general form the matter is somewhat 

more complicated. Suppose that the equation of the 

curve  is , where  denotes the arc length reckoned from 

some fixed point, let  be an arbitrary fixed point on  and 

let  be the part of  that remains after the smaller of the arcs with end 

points  and  is deleted from . If the limit 

 

(4) 

Exists and is finite, it is called a singular integral. It can be proved, for 

example, that a singular integral (4) exists if the curve  is smooth in a 

neighbourhood of a point  distinct from the end points of  and if the 

density  satisfies a Hölder condition 

 

Under these conditions there also exist boundary values, and these are 

given by the Sokhotskii formulas: 
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(5) 

and the functions  and  are continuous in a 

neighbourhood of  from the left and right, respectively, of . In 

the case of a Cauchy integral, the singular integral is equal to 

 

 

An equivalent form of (5) is 

 

(6) 

 

(7) 

The Sokhotskii formulas (5)–(7) are of fundamental importance in the 

solution of boundary value problems of analytic function theory, of 

singular integral equations connected with integrals of Cauchy type 

(cf. Singular integral equation), and also in the solution of various 

problems in hydrodynamics, elasticity theory, etc. 

Check in Progress-I 

Note: Please give solution of questions in space give below: 

Q. 1 Define Cauchy’s Integral Formula. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Cauchy’s Integral Formula. 

Solution: 

……………………………………………………………………………
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……………………………………………………………………………

….………………………………………………………………………… 

 

Let  be an arbitrary rectifiable curve of length ; for simplicity it is 

assumed that  is closed. Let  be the angle between the 

direction of the -axis and the tangent to  at the point , 

regarded as a function of the arc length , and let  be a complex 

function of  of bounded variation on . The expression 

 

(8) 

is called an integral of Cauchy–Stieltjes type. In other words, an integral 

of Cauchy–Stieltjes type is an integral of Cauchy type with respect to an 

arbitrary finite complex Borel measure with support on . If  is 

absolutely continuous, then the integral of Cauchy–Stieltjes type 

becomes an integral of Cauchy–Lebesgue type, often called simply an 

integral of Cauchy type: 

 

(9) 

where . 

Let  be a point of  at which there exists a well-defined tangent, 

inclined to the -axis at an angle ; such points exist almost-

everywhere on a rectifiable curve. Let  be the point on the straight line 

passing through  and inclined to the normal at an angle , at a 

distance , i.e. . The difference 

between the integral of Cauchy–Stieltjes type (8) and the integral 

over , 
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is defined at all points  where the tangent is defined, i.e. almost-

everywhere on . An important proposition in the theory of integrals of 

Cauchy–Stieltjes type is Privalov's fundamental lemma: The limit 

 

exists for all points , with the possible exception of a point set of 

measure zero on , independent of ; the convergence is uniform 

in  in any angle , . If the singular integral 

exists almost-everywhere on , then the integral of Cauchy–Stieltjes 

type has angular boundary values  almost-everywhere 

on  and these satisfy the Sokhotskii formulas: 

 

(10) 

The converse is also true: If an integral of Cauchy–Stieltjes type has 

angular boundary values from both inside and outside , almost-

everywhere on , then the singular integral exists and formulas (10) are 

valid almost-everywhere on . As yet (1987) there is no complete 

solution to the problem of finding reasonably simple necessary and 

sufficient conditions for the existence of boundary values for integrals of 

Cauchy–Stieltjes type or even for integrals of Cauchy–Lebesgue type. 

In contrast to the previously considered case of an integral of Cauchy 

type over a smooth curve , an integral of Cauchy–Stieltjes type, even 

when it has angular boundary values, is no longer necessarily a 

continuous function in a neighbourhood of  from the left or right 

of . It is known, for example, that an integral of Cauchy–Lebesgue type 

(9) is continuous in the closed domain  bounded by the rectifiable 

contour , provided one additionally assumes that the 

density  satisfies a Lipschitz condition on : 

 

One says that an integral of Cauchy–Lebesgue type (9) becomes a 

Cauchy integral 
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(11) 

in the sense of Lebesgue, if the angular boundary values  from 

the inside of  coincide with  almost-everywhere on , 

i.e.  almost-everywhere on . In this context the 

Golubev–Privalov theorem holds: A summable 

function  on  represents the angular boundary values of some 

Cauchy integral from the inside of  if and only if all its moments 

vanish: 

 

(12) 

If the analogous conditions 

 

(13) 

are satisfied, then the integral of Cauchy–Stieltjes type (8) becomes a 

Cauchy–Stieltjes integral: 

 

(14) 

i.e. the angular boundary values  from the inside 

of  coincide with the derivative  almost-everywhere on , or, 

stated differently, the angular boundary values  from the 

outside of  vanish almost-everywhere on . Conditions (13) 

immediately imply that the function  is absolutely continuous 

on  and, consequently, in this case the Cauchy–Stieltjes integral (14) 

is in fact a Cauchy–Lebesgue integral with 

density . Thus, the class of functions 

representable by a Cauchy–Stieltjes integral is identical with the class of 

functions representable by a Cauchy–Lebesgue integral. 

An important problem is the intrinsic characterization of classes of 

functions which are regular in a domain  bounded by a closed 
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rectifiable curve , and representable by a Cauchy integral (11), an 

integral of Cauchy–Lebesgue type (9), or an integral of Cauchy–Stieltjes 

type (8); concerning the most important classes 

, ,  and  see Boundary properties of 

analytic functions. 

In the simplest case, when  is the unit disc 

and  is the unit circle, an integral of Cauchy–Stieltjes 

type, which in this case has the form 

 

(15) 

always represents a function of class , . The converse is 

false: The set of functions of classes ,  is more extensive 

than the set of functions representable in the form (15). On the other 

hand, the set of functions representable in  by a Cauchy–Stieltjes or a 

Cauchy integral is identical with the class . 

In the case of an arbitrary simply-connected domain  bounded by a 

rectifiable curve , the class of functions representable in  by a 

Cauchy–Stieltjes or a Cauchy integral is identical with the Smirnov 

class  (see Boundary properties of analytic functions). The 

characteristics of the classes of functions representable by an integral of 

Cauchy–Stieltjes type or an integral of Cauchy–Lebesgue type are 

considerably more complicated. 

Let  be an arbitrary (non-analytic) function of class  in a finite 

closed domain  bounded by a piecewise-smooth Jordan curve . The 

term Cauchy integral formula is sometimes applied also to the following 

generalization of the classical formula (1): 

 

(16) 

 



Notes  

96 

                                                                                                                                              

Where 

 

This formula first appeared, apparently, in the work of D. Pompeiu 

(1912). It is also known as the Pompeiu formula, the Borel–Pompeiu 

formula, or the Cauchy–Green formula, and is widely applied in the 

theory of generalized analytic functions, singular integral equations and 

various applied problems. 

Let  be a regular analytic function of several complex 

variables  in a closed polydisc 

, . Then, at each point of ,  is 

representable by a multiple Cauchy integral: 

 

(17) 

where  is the 

distinguished boundary of the polydisc, 

, , . Formula 

(17) yields a simple analogue of the Cauchy integral for a circle

, but when  the integration in (17) 

extends not over the entire boundary of the polydisc but only over its 

distinguished boundary. In general, let  be a 

polycircular domain in  — a product of simply-connected plane 

domains  with smooth 

boundaries ; 

let  be the distinguished boundary of , which is 

a smooth -dimensional manifold. Formula (17) also generalizes to this 

case. 

More profound generalizations of the Cauchy integral formula are 

extremely important in the theory of analytic functions of several 

complex variables; such generalizations are the Leray formula (which J. 

Leray himself called the Cauchy–Fantappié formula) and the Bochner–

Martinelli representation formula. In this connection, when  the 
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theory is concerned mainly with boundary properties of integral 

representation. 

11.2 SOKHOTSKII FORMULAS 
In the non-Soviet literature Plemelj formulas is the usual name for what 

is here called Sokhotskii formulas. 

Mapping properties of the singular integral operator associated to 

integrals of Cauchy type form an important subject. Let  be the graph 

of a Lipschitz function . The principal result, due to A.P. Calderón 

and in full generality to G. David, is that the singular integral operator 

 

at first defined as a principal value integral for compactly supported 

smooth functions  on , extends to a bounded linear operator 

sending  to itself, and (hence) also sending  to 

itself  and  to , the functions of bounded 

mean oscillation. 

Formally one can write: 

 

 

The integral operators  with kernel 

 

Are the so-called commutators of Calderón. These are of independent 

interest, e.g. in the theory of partial differential equations (cf. Differential 

equation, partial). The operators  have the same mapping 

properties as the Cauchy integral operator, as was shown by R.R. 

Coifman, A. McIntosh and Y. Meyer. The best norm estimate known at 
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this moment (1987) is that for every  there exists a  such 

that 

 

This estimate was obtained by M. Christ and J.L. Journé. 

The Cauchy integral operators as well as Calderón's commutators are 

examples of so-called Calderón–Zygmund operators.  

For results concerning  functions, , which can be 

represented by Cauchy integrals 

Example. Show that , where C is the circle 

 with positive orientation. 

 

Solution. We have  and . The point  lies interior 

to the circle, so Cauchy's integral formula implies that  

 

  ,  

 

and multiplication by  establishes the desired result. 

Example . Show that , where C is the circle 

 with positive orientation. 
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Solution. Here we have . We manipulate the integral and 

use Cauchy's integral formula to obtain  

 

   

Example . Show that , where C is the circle 

 with positive orientation. 

 

Solution. We see that . 

The only zero of this expression that lies in the interior of C is .  

We set  and use Theorem 6.10 to conclude that  
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11.3 LEIBNIZ’S INTEGRAL RULE 

The Leibniz integral rule gives a formula for differentiation of a definite 

integral whose limits are functions of the differential variable, 

 

(1) 

It is sometimes known as differentiation under the integral sign. 

This rule can be used to evaluate certain unusual definite integrals such 

as 

  

 

(2) 

   

  

for  

Theorem (Leibniz's Rule). Let G be an open set, and let  be 

an interval of real numbers. Let  and its partial 

derivative  with respect to z be continuous functions for 

all z in G and all t in I. Then  

 

    is analytic for z in G, and  
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  . 

 

11.3.1 Cauchy's Integral Formulae for Derivatives 
 

Theorem (Cauchy's Integral Formulae for Derivatives). Let  be 

analytic in the simply connected domain D, and let C be a simple closed 

positively oriented contour that lies in D. If z is a point that lies interior 

to C, then for any integer , we have 

 

   

Example . Show that , where C is the circle 

 with positive orientation. 

 

Solution. If we set , then a straightforward calculation shows 

that .  Using Cauchy's integral formulas 

with , we conclude that  
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Corollary 11.1 If  is analytic in the domain D, then all derivatives 

  exists for  (and therefore are 

analytic in D). 

Remark 11.1. This result is interesting, as it illustrates a big difference 

between real and complex functions. A real function  can have the 

property that  exists everywhere in a domain D, 

but  exists nowhere. Corollary 11.1 states that if a complex 

function  has the property that exists everywhere in a 

domain D, then, remarkably, all derivatives of  exist in D.  

11.4 THE FUNDAMENTAL THEOREMS 

OF INTEGRATION 

  Let f be analytic in the simply connected domain D. The theorems in 

this section show that an anti-derivative F can be constructed by contour 

integration. A consequence will be the fact that in a simply connected 

domain, the integral of an analytic function f along any contour joining 

 is the same, and its value is given by . As a 

result, we can use the anti-derivative formulas from calculus to compute 

the value of definite integrals. The next two theorems are generalizations 

of the Fundamental Theorems of Calculus.  

The first fundamental theorem of calculus states that, 

if  is continuous on the closed interval  and  is the indefinite 

integral of  on , then 

 

(1) 

This result, while taught early in elementary calculus courses, is actually 

a very deep result connecting the purely algebraic indefinite integral and 

the purely analytic (or geometric) definite integral. 

The second fundamental theorem of calculus holds for  a continuous 

function on an open interval  and  any point in , and states that if  is 

defined by 
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(2) 

then 

 

(3) 

at each point in . 

The fundamental theorem of calculus along curves states that if  has 

a continuous indefinite integral  in a region  containing a 

parameterized curve  for , then 

 

Check in Progress-II 

Note : Please give solution of questions in space give below: 

Q. 1 Define Fundamental Theorem For Integration. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Leibniz's Rule. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

11.4.1 Indefinite and Definite Integral  

 Theorem (Indefinite Integrals or Antiderivatives). Let f(z) be analytic 

in the simply connected domain D. If  is a fixed value in D and if C is 

any contour in D with initial point  and terminal point z, then the 

function 
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is well-defined and analytic in D, with its derivative given by 

.  

Remark . It is important to stress that the line integral of an analytic 

function is independent of path. In Example 6.9 we showed that 

, where  and  were different contours 

joining . Because the integrand  is an analytic 

function, Theorem 6.8 lets us know ahead of time that the value of the 

two integrals is the same; hence one calculation would have sufficed. If 

you ever have to compute a line integral of an analytic function over a 

difficult contour, change the contour to something easier. You are 

guaranteed to get the same answer. Of course, you must be sure that the 

function you're dealing with is analytic in a simply connected domain 

containing your original and new contours. 

Theorem (Definite Integrals). Let f(z) be analytic in a simply connected 

domain D. If  and  are two points in D joined by a contour C, then 

 

  ,  

 

where F(z) is any antiderivative of f(z) in D. 

Example 1. Show that  where  is the principal 

branch of the square root function and C is the line segment joining 

.  

 

Remark. Sometimes we write this as  .  
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Solution. We showed that if , then , where the 

principal branch of the square root function is used in both the formulas 

for F(z) and F'(z). We note that C is contained in the simply connected 

domain , which is the open disk of radius 4 centered at the 

midpoint of the segment C. Since  is analytic in the 

domain  and is an anti-derivative of , Theorem 6.9 

guarantees that  

 

   

 

Example 2 Show that , where C is the 

line segment between .  

 

Solution. An antiderivative of  is . 

Because F(z) is entire, we use Theorem 6.9 to conclude that 
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Example 3. Find , where n is a 

positive integer.  

Answer. . 

   

  The point  that lies inside the contour .  

Solution. The integrand  is not defined at the point  

which lies interior to the circle , 

 

and the integral  has the form  
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where  ,  

 

so we can use Cauchy's Integral formula for derivatives . 

 

Here we have    and    and calculation 

reveals that  .  

 

Applying Cauchy's Integral formula for 

derivatives    with    we 

write   

 

   

.  

 

Then multiplication by  establishes the desired result  

 

   . 

Exercise 4. Find 

.  

Answer. 

.  
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  The point  that lies inside the contour .  

Solution. This problem is a challenge because it requires us to factor 

: 

 

The linear factors of  are  

 

  .  

The integrand  is not 

defined at the point  which lies interior to the circle , 

 

and the integral  has 

the form  so we can use the Cauchy Integral Formula 

(see Section 6.5). 

 

Here we have  and calculation 

reveals that .  

 

Applying the Cauchy's integral formula  
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we write   

 

 

.  

 

Then multiplication by  establishes the desired result  

 

  

. 

11.5 SUMMARY 

We study in this unit with Cauchy’s Integral Formula with its statement 

and proof also study non-Soviet literature Plemelj formulas and 

boundary properties with analytic function. We study with Cauchy 

integral formula for derivatives also Leibniz’s Integral rule with its 

statement. We Study Indefinite and definite integral with its statement 

and examples.  

 

11.6 KEYWORD 

Indefinite: lasting for an unknown or unstated length of time 

Definite: clearly stated or decided; not vague or doubtful. 

Leibniz’s Integral: Leibniz Rule. If Φ(t) = ... integral / x c f(z) 

dz is the area under the curve y = f(z), between z = a and z = x. ... Now 

suppose f is a function of two variables and define. 

Boundary: a line which marks the limits of an area; a dividing line 
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11.7 QUESTIONS FOR REVIEW 

Exercise 1. , where C is the line segment from 

.   

Exercise 2. , where C is the line segment from 

. 

Exercise 3. , where C is the line segment from 

.  

Exercise 4. , where C is the line segment from 

Exercise 5. Find 

.  

Exercise 6. Find .  

Exercise 7. Find .  
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11.9 ANSWER TO CHECK YOUR 

PROGRESS 

Check In Progress-I 

Answer Q. 1 Check in Section 1 

 2 Check in Section 1.2 

Check In Progress-II 

Answer Q. 1 Check in section 4 

   2 Check in Section 3 
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UNIT 12 TOPIC:COMPLEX 

EXPONENTS AND ZEROS 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.1.1 Complex Exponents 

12.2 The Rule For Exponents 

12.3 Singularities, Zeros, and Poles 

12.4 Zero of Order k 

12.4.1 A zero of order one is sometimes called a simple zero  

12.5 Summary 

12.6 Keyword 

12.7 Questions for review 

12.8 Suggestion Reading and References 

12.9 Answer to check your Progress 

 

12.0 OBJECTIVES  

 This unit deals with exponent functions 

 Deals with Zeros function with its examples 

 Deals with complex exponents 

 Deals with rule for exponents 

 Deals with Zeros of order k  

 

12.1 INTRODUCTION 

We indicated that it is possible to make sense out of expressions such 

as  or  without appealing to a number system beyond the 

framework of complex numbers. We now show how this is done by 

taking note of some rudimentary properties of the complex exponential 

and logarithm, and then using our imagination. 
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12.1.1 Complex Exponents 

  We begin by generalizing Identity. Equations show that  can be 

expressed as the set . We can 

easily show (left as an exercise) that, for , , 

where  is any branch of the function . But this means that 

for any , the identity  holds true. 

Because  denotes the set , we see 

that , for . 

  Next, we note that identity gives us , where n is any 

natural number, so that  for . With these 

preliminaries out of the way, we can now come up with a definition of a 

complex number raised to a complex power. 

Definition. Let c be a complex number. We define  as follows  

 

 1 .  

 The right side of Equation is a set. This definition makes sense because, 

if both z and c are real numbers with , Equationgives the familiar 

(real) definition for , as the following example illustrates. 

Example. Use Equation 1 toevaluate . 

Solution. Calculating  gives  

 

  .  

Thus  is the set . The distinct values 

occur when ; we get  and

. In other words, .  

Remark. The expression  is different from , as the former 

represents the set  and the latter gives only one value, . 
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Because  is multivalued, the function  will, in general, be 

multivalued. If we want to focus on a single value for , we can do so 

via the function defined for  by 

 

 2    

 

which is called the principal branch of the multivalued function . Note 

that the principal branch of  is obtained from Equation 2 by replacing 

 with the principal branch of the logarithm. 

 Example. Find the principal value of (a)  , and (b) .  

Solution. From Example 5.3,  

 

    

Identity (2) yields the principal values of  and :  

 

    

  and 

   

Note that the result of raising a complex number to a complex power 

may be a real number in a nontrivial way.  
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  Let us now consider the various possibilities that may arise in the 

definition of .  

Case (i). Suppose  where k an integer. Then, if ,  

 

  .   

Recalling that the complex exponential function has period , we 

have  

 

  . 

Which is the single-valued kth power of z. This is easily verified by the 

computation 

 

    

which is the single-valued kth power of z. 

 Case (ii). If  where k is an integer and , then  

 

(3)  .  

Hence Equation (1) becomes  

 

   for . 

When we again use the periodicity of the complex exponential function, 

Equation (3) gives k distinct values corresponding to . 
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Therefore, as Example 5.6 illustrated, the fractional power  is the 

multivalued  root function. Equation (3) is easily verified by the 

computation  

 

     

  

Case (iii). If j and k are positive integers that have no common factors 

and , then Equation (1) becomes  

 

   for . 

This is easy to establish. If  then  

 

    

And again there are k distinct values corresponding to .  
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Case (IV). Suppose c is not a rational number, then there are infinitely 

many values for , provided . 

  

Example. The values of of  are  

 

    

 

where n is an integer. The principal value of  is  

 

    

 

Figure shows the terms for this multivalued expression corresponding to

. They exhibit a spiral pattern that is often 

present in complex powers. 

 

  Figure  Some of the "spiral pattern" of values for . 
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Check in Progress-I 

Note: Please give solution of questions in space give below: 

Q. 1 Define Complex Exponents. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Use Equation 1 toevaluate . 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

12.2 THE RULES FOR EXPONENTS  

 

  Some of the rules for exponents carry over from the real case. In the 

exercises we ask you to show that if c and d are complex numbers and 

, then  

  

   

 

where n is an integer.  

 

 

  The following example shows that Identity (1) does not hold if n is 

replaced with an arbitrary complex value. 
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Example. (a) ,  

 

and (b) .  

 

Since these sets of solutions are not equal, Identity (1) does not always 

hold 

We can compute the derivative of the principal branch of , which is the 

function  

 

  .  By the chain rule,  

  

  .  

  If we restrict  to the principal branch,  then 

Equation (4) can be written in the familiar form that you learned in 

calculus. That is, for  and z not a negative real number, 

 

   

  We can use Identity (1) to define the exponential function with base b, 

where  is a complex number: 

  .  

  If we specify a branch of the logarithm, then  will be single-valued 

and we can use the rules of differentiation to show that the resulting 

branch of  is an analytic function. The derivative of  is then given 

by the familiar rule  

(5)   

where  is any branch of the logarithm whose branch cut does not 

include the point . 
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12.3 SINGULARITIES, ZEROS, AND 

POLES 

  Recall that the point  is called a singular point, or singularity of the 

complex function f(z) if f is not analytic at , but every neighborhood 

 contains at least one point at which f(z) is analytic. For 

example, the function  is not analytic at , but is 

analytic for all other values of z. Thus the point  is a singular point 

of f (z). As another example, consider . We know that g 

(z) is analytic for all z except at the origin and at all points on the 

negative real-axis. Thus, the origin and each point on the negative real 

axis is a singularity of . 

  The point  is called an isolated singularity of the complex function f 

(z) if f is not analytic at , but there exists a real number  such 

that f (z) is analytic everywhere in the punctured disk . The 

function  has an isolated singularity at .  

  The function , however, the singularity at  (or at 

any point of the negative real axis) that is not isolated, because any 

neighborhood of contains points on the negative real axis, and 

 is not analytic at those points. Functions with isolated 

singularities have a Laurent series because the punctured disk   is 

the same as the annulus . The logarithm function 

 does not have a Laurent series at any point  on the 

negative real-axis. We now look at this special case of Laurent's theorem 

in order to classify three types of isolated singularities. 

Definition (Removable Singularity, Pole of order k, Essential 

Singularity). Let f (z) have an isolated singularity at  with Laurent 

series expansion  

 

    valid for  .  
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Then we distinguish the following types of singularities at .  

 

(i) If , then we say that f (z) has a removable 

singularity at .  

 

(ii) If k is a positive integer such that  but

, then we say that f (z) has a pole 

of order k at .  

 

(iii) If  for infinitely many negative integers n, then we say 

that f(z) has an essential singularity at .  

  Let's investigate some examples of these three cases. 

(i). If f(z) has a removable singularity at , then it has a Laurent 

series  

 

    valid for  .  

 

  Theorem implies that the power series for f(z) defines an analytic 

function in the disk .  

  If we use this series to define , then the function f(z) becomes 

analytic at , removing the singularity.  

 For example, consider the function . It is undefined 

at  and has an isolated singularity at , as the Laurent series 

for f(z) is  
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valid for .  

Exploration 1. 

 Another example is , which has an isolated 

singularity at the point , as the Laurent series for g(z) is 

 

   

valid for . If we define , then g(z) will be analytic 

for all z. 

(ii). If f(z) has a pole of order k at , the Laurent series for f(z) is 

 

    valid for  .  

where .  

 Extra Example 1. The following example will help this concept. 

Consider the function . The leading term in the Laurent 

series expansion S(z) is  and S(z) goes to  in the same 

manner as .   

 

 Another example is;  
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has a pole of order  at . 

Exploration 2. 

 If f(z) has a pole of order 1 at , we say that f(z) has a simple pole 

at .   

  For example,  

 

    

has a simple pole at .  

Exploration 3. 

 (iii). If infinitely many negative powers of  occur in the Laurent 

series, then f(z) has an essential singularity at . For example,  

 

    

has an essential singularity at the origin.  
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Check in Progress-I 

Note: Please give solution of questions in space give below: 

Q. 1 Define Removable Singularity. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

………..………………………………………………………………… 

Q. 2 Define Pole of order k. 

Solution: 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

12.4 ZERO OF ORDER K  

Definition (Zero of order k). A function f (z) analytic in  has 

a zero of order k at the point  if and only if  

 

  , and . 

 

12.4.1 A zero of order one is sometimes called a 

simple zero  

The word multiplicity is a general term meaning "the number of values 

for which a given condition holds." For example, the term is used to refer 

to the value of the totient valence function or the number of times a given 

polynomial equation has a root at a given point. 
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Let  be a root of a function , and let  be the least positive 

integer  such that . Then the power series of  about  begins 

with the the term, 

 

And  is said to have a root of multiplicity (or "order") . If , 

the root is called a simple root 

Theorem. A function  analytic in  has a zero of order k at 

the point  iff its Taylor series given by  has 

 

  .  

Example.  We see that the function 

 

     

 

has a zero of order  at . Definition 7.6 confirms this fact 

because   

 

    

 

Then,  but .  

Theorem. Suppose f(z) is analytic in . Then f(z) has a zero of 

order k at the point  if and only if it can be expressed in the form 

 

(6)  , 

 

where g(z) is analytic at .  
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Corollary. If f(z) and g(z) are analytic at , and have zeros of orders 

m and n, respectively at , then their product  has a 

zero of order .  

Example. Let . Then f (z) can be factored as the product 

of  and , which have zeros of orders  and , respectively, 

at .  

Hence  is a zero of order 4 off(z). 

Theorem. A function f (z) analytic in the punctured disk  has a 

pole of order k at  if and only if it can be expressed in the form 

   

(7)  ,  

 

where the function h (z) is analytic at the point .  

Corollary. If f(z) is analytic and has a zero of order k at the point , 

then  has a pole of order k at .  

Solution.  , where  is analytic at the point

, and .  

 

Then ,  

 

where  is analytic at the point , and .  

 

Now and conclude that  has a pole of order k at .  

Corollary If f(z) has a pole of order k at the point , 

then  has a removable singularity at . If we 

define , then g(z) has a zero of order k at .  
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Solution. ,  is analytic in the punctured disk 

 

 

where  is analytic at the point , and .  

 

Then 

  for  

, 

 

where  is analytic at the point , and .  

 

If we define , then  is analytic at at the point , and has a 

zero of order k at .  

 Corollary  If f (z) and g (z) have poles of orders m and n, respectively at 

the point , then their product  has a pole of order

.  

Solution.   Is analytic in the punctured disk 

, 

where  is analytic at the point , and .  

Also,  is analytic in the punctured disk 

, 

where  is analytic at the point , and .  

Then 

  ,  

 is analytic in the punctured disk 

, 

 

where  is analytic at the point , and 
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.  

 

Now and conclude that  has a pole of 

order n+m at .  

Corollary Let f(z) and g(z) be analytic with zeros of orders m and n, 

respectively at . Then their quotient  has the following 

behavior: 

 

(i) If , then h(z) has a removable singularity at .  If we define 

, then h(z) has a zero of order . 

 

(ii) If , then h(z) has a pole of order . 

 

(iii) If , then h(z) has a removable singularity at , and can be 

defined so that h(z) is analytic at , by .  

Solution.  , where  is analytic at the point , 

and . 

 

Also ,  where  is analytic at the point , and 

.  

 

Thus , is analytic 

in some punctured disk , 

 

where  is analytic at the point , and .  

  For part (i) If , then  has the form   

 

 ,  for , 
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where  is analytic at the point , and .  

 

We define . 

 

Now we have 

 

 ,  for , 

 

where  is analytic at the point , and .  

 

Now and conclude that  has a zero of order 

. 

  For part (ii) If , then  has the form  

 

  ,  for , 

 

where  is analytic at the point , and .  

 

Now and conclude that  has a pole of order 

n-m at .  

  For part (iii) If , then  has the form   

 

 ,  for , 

 

where  is analytic at the point , and .  

 

All we need to do is let this definition hold in the full neighborhood   

 

 ,  for , 

 

and   is analytic at .  
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 ExampleLocate the zeros and poles of , and determine 

their order. 

Solution. we saw that the zeros of  occur at the points 

, where n is an integer. Because , the 

zeros of f(z) are simple. Similarly, the function  has 

simple zeros at the points  and , where n is an integer. 

From the information given, we find that  behaves as 

follows: 

 

 i.  h(z) has simple zeros at , where ; 

 

 ii.  h(z) has simple poles at , where n is an integer; and 

 

 iii. h(z) is analytic at  if we define . 

Example Locate the poles of , and specify their 

order. 

 

Solution. The roots of the quadratic equation  occur at 

the points . If we replace z with  in this equation, the 

function  has simple zeros at the points 
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. Corollary 7.5 implies that g(z) has simple poles 

at . 

Example . Locate the zeros and poles of , and 

determine their order. 

Solution. The function  has a zero of order  at 

 and simple zeros at the points . Corollary 7.5 

implies that g(z) has a pole of order 3 at the point  and simple poles 

at the points .  

 Exercise . Let  be analytic and have a zero of order k at .  Show 

that the function  has a simple pole at .  

Solution.   has a zero of order  at , so  

 

 has a pole of order  at ,  

 

which means that  has a simple pole at .  

Exercise . Let  have a pole of order k at . Show that  has 

a pole of order k+1 at .   

Solution Method I. Express f(z) in the form 

 

  , 

 

where the function h(z) is analytic at the point .  Then 
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where , is analytic at the point ,  

 

and  .  

 

Therefore,  has a pole of order k+1 at .  

Solution Method II.  Since  has a pole of order , at  we can 

write 

 

    

 

Differentiate the series termwise and obtain 
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Therefore,  has a pole of order k+1 at .   

12.5 SUMMARY 

In this unit we study with exponent functions in complex analysis with 

examples. We study h Zeros function with its examples. We study 

complex exponents and its properties with definition. We study 

singularities, poles with order k and zero of order k .We study rule for 

exponents. We study Zeros of order k with its examples.  

12.6 KEYWORD 

Exponent:a quantity representing the power to which a given 

number or expression is to be raised, usually expressed as a raised 

symbol beside the number or expression 

Singularities: the state, fact, quality, or condition of being singular 

Punctured: cause a sudden collapse of (mood or feeling) 

 

12.7 QUESTIONS FOR REVIEW 
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Exercise 1. Locate the poles of the following functions and determine 

their order.  

(a).  2 (b). 

. 

  

Exercise 2. Suppose that  has a removable singularity at .  

Show that the function  has either a removable singularity 

or a pole at .  

Exercise 3. Let  be analytic and have a zero of order  at 

.  Show that  has a zero of order  at . 

Exercise 4. Let  be analytic at  and have zeros of order 

, respectively, at .  

What can you say about the zero of  at ?  

Exercise 5. Let  have poles of order , respectively, 

at .  

Show that  has either a pole or a removable singularity at .  
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12.9 ANSWER TO CHECK YOUR 

PROGRESS 

 Check in Progress-I 

Answer Q. 1 Check in Section 1.2 

 2 Check in Section 1.2 

 Check In Progress-II 

Answer Q. 1 Check in section 4 

   2 Check in Section 4 
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UNIT 13 TOPIC: GENUS AND 

LAGUERRE’S THEOREM 

STRUCTURE 

13.0 Objective 

13.1 Introduction 

13.1.1 Hadamard’s Factorization Theorem 

13.1.2 Cauchy-Hadamard theorem 

13.1.3 Disc Of Convergence 

13.1.4 Reinhardt Domain 

13.2 Genus of an Entire Function 

13.2.1Entire Function 

13.3 Laguerre's method 

13.3.1 Laguerre’s Polynomials 

13.3.2 Laguerre’s Transform 

13.3.3 Laguerre’s Function 

13.3.4 Laguerre’s Differential Equation 

13.4 Contour Integral 

13.4.1 Complex Integral 

13.5 Summary 

13.6 Keyword 

13.7 Questions for review  

13.8 Suggestion Reading and References 
13.9 Answer  to check your Progress 

 

13.0 OBJECTIVE 

 Deals with Genus theorem 

 Deals with Hadamard’s Factorization Theorem 

 Deals with Cauchy-Hadamard Theorem and its proof with 

statement 

 Deals with Genus of an Entire Function 

 Deals with Entire function with its proof 
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 Deals with Laguerre's method  

 Deals with Laguerre’s Differential Equation 

 

13.1 INTRODUCTION 

Let f:C→C be a nonzero entire function of finite rank p∈Np∈N. 

Let 0 be a zero of f of multiplicity m≥0. 

Let ⟨an⟩⟨an⟩ be the sequence of nonzero zeroes of ff, repeated according 

to multiplicity. 

Genus of an entire function 

Converges. The non-negative integer is called the genus of the entire 

function. If the order ρ is not an integer, then is the integer part of. If the 

order is a positive integer. 

In complex analysis, an entire function, also called an integral 

function, is a complex-valued function that is holomorphic at all finite 

points over the whole complex plane. Typical examples of entire 

functions are polynomials and the exponential function, and any finite 

sums, products and compositions of these, such as the trigonometric 

functions sine and cosine and their hyperbolic 

counterparts sinh and cosh, as well as derivatives and integrals of entire 

functions such as the error function. If an entire function f(z) has 

a root at w, then f (z)/(z−w), taking the limit value at w, is an entire 

function. On the other hand, neither the natural logarithm nor the square 

root is an entire function, nor can they be continued analytically to an 

entire function. 

13.1.1 Hadamard Factorization Theorem 

Let  be an entire function of finite order  and  the zeros of , 

listed with multiplicity, then the rank  of  is defined as the least 

positive integer such that 
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(1) 

Then the canonical Weierstrass product is given by 

 

(2) 

and  has degree . The genus  of  is then defined as , 

and the Hadamard factorization theory states that an entire 

function of finite order  is also of finite genus , and 

 

 

13.1.2 Cauchy-Hadamard theorem 

Consider a complex power series 

 

(1) 

and let 

 

If , then the series (1) is convergent only at the point ; 

if , then the series (1) is absolutely convergent in the 

disc  where 

 

(2) 

and divergent outside the disc, where ; if , the series 

(1) is absolutely convergent for all . The content of the Cauchy–

Hadamard theorem is thus expressed by the Cauchy–Hadamard formula 

(2), which should be understood in this context in a broad sense, 

including  and . In other words, the Cauchy–

Hadamard theorem states that the interior of the set of points at which the 

series (1) is (absolutely) convergent is the disc  of radius (2). 

In the case of a real power series (1), formula (2) defines the "radius" of 

the interval of convergence: . Essentially, the 

Cauchy–Hadamard theorem was stated by A.L. Cauchy in his 
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lectures [1] in 1821; it was J. Hadamard [2] who made the formulation 

and the proof fully explicit. 

For power series 

 

(3) 

in  complex variables , , one has the following 

generalization of the Cauchy–Hadamard formula: 

 

(4) 

 

which is valid for the associated radii of convergence  of the 

series (3) (see Disc of convergence). Writing (4) in the 

form , one obtains an equation defining the boundary 

of a certain logarithmically convex Reinhardt domain with centre , 

which is the interior of the set of points at which the series (3) is 

absolutely convergent ( ). 

 
13.1.3 Disc of Convergence 

Disc of Convergence of a power series 

 

The disc , , in which the series 

is absolutely convergent, while outside the disc (for ) it is 

divergent. In other words, the disc of convergence  is the interior of the 

set of points of convergence of the series . Its radius  is called the 

radius of convergence of the series. The disc of convergence may shrink 

to the point  when , and it may be the entire open plane, 

when . The radius of convergence  is equal to the distance of 

the centre  to the set of singular points of  (for the determination 

of  in terms of the coefficients  of the series see Cauchy–Hadamard 

theorem). Any disc , , in the -plane is 

the disc of convergence of some power series. 
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For a power series 

 

(2) 

 

in several complex variables , , a polydisc of convergence 

of the series (2) is defined to be any polydisc 

 

at all points of which the series (2) is absolutely convergent, while in any 

polydisc 

 

where  and at least one of the latter inequalities is strict, there 

is at least one point at which the series is divergent. The radii 

, , , of the polydisc of convergence are called 

the associated radii of convergence of the series (2). They are in a well-

defined relationship with the coefficients of the series, so that any 

polydisc with centre  and with radii satisfying this relationship is the 

polydisc of convergence of a series (2) (cf. Cauchy–Hadamard theorem). 

Any polydisc , , , in the complex 

space  is the polydisc of convergence for some power series 

in  complex variables. When  the interior of the set of points of 

absolute convergence of a series (2) is more complicated — it is a 

logarithmically convex complete Reinhardt domain with 

centre  in  (cf. Reinhardt domain). 

 
13.1.4 Reinhardt Domain 

multiple-circled domain 

A domain  in the complex space , , with centre at a 

point , with the following property: Together 

with any point , the domain also contains the set 
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A Reinhardt domain  with  is invariant under the 

transformations , , . 

The Reinhardt domains constitute a subclass of the Hartogs domains 

(cf. Hartogs domain) and a subclass of the circular domains, which are 

defined by the following condition: Together with any , the 

domain contains the set 

 

i.e. all points of the circle with centre  and 

radius  that lie on the complex 

line through  and . 

A Reinhardt domain  is called a complete Reinhardt domain if together 

with any point  it also contains the polydisc 

 

A complete Reinhardt domain is star-like with respect to its 

centre  (cf. Star-like domain). 

Examples of complete Reinhardt domains are balls and polydiscs in . 

A circular domain  is called a complete circular domain if together 

with any pont  it also contains the entire 

disc . 

A Reinhardt domain  is called logarithmically convex if the 

image  of the set 

 

under the mapping 

 

is a convex set in the real space . An important property of 

logarithmically-convex Reinhardt domains is the following: Every such 

domain in  is the interior of the set of points of absolute convergence 

(i.e. the domain of convergence) of some power series 

in , and conversely: The domain of convergence of 
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any power series in  is a logarithmically-convex Reinhardt 

domain with centre . 

 

13.2 GENUS OF AN ENTIRE FUNCTION 

The integer equal to the larger of the two numbers  and  in the 

representation of the entire function  in the form 

 

(*) 

 

where  is the degree of the polynomial  and  is the least integer 

satisfying the condition 

 

The number  is called the genus of the product appearing in formula 

(*). 

13.2.1 Entire function 

A function that is analytic in the whole complex plane (except, possibly, 

at the point at infinity). It can be expanded in a power series 

 

which converges in the whole complex plane, . 

If  everywhere, then , where  is an entire 

function. If there are finitely many points at which  vanishes and 

these points are  (they are called the zeros of the function), then 

 

where  is an entire function. 

In the general case when  has infinitely many zeros  there 

is a product representation (see Weierstrass theorem on infinite products) 
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(1) 

where  is an entire function,  if , and  is the 

multiplicity of the zero  if . 

Let 

 

If for large  the quantity  grows no faster than , then  is a 

polynomial of degree not exceeding . Consequently, if  is not a 

polynomial, then  grows faster than any power of . To estimate 

the growth of  in this case one takes as a comparison function the 

exponential function. 

By definition,  is an entire function of finite order if there is a finite 

number  such that 

 

The greatest lower bound  of the set of numbers  satisfying this 

condition is called the order of the entire function . The order can 

be computed by the formula 

 

If  of order  satisfies the condition 

 

(2) 

then one says that  is a function of order  and of finite type. The 

greatest lower bound  of the set of numbers  satisfying this condition 

is called the type of the entire function . It is determined by the 

formula 

 

Among the entire functions of finite type one distinguishes entire 

functions of normal type  and of minimal type . If 

the condition (2) does not hold for any , then the function is said 

to be an entire function of maximal type or of infinite type. An entire 
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function of order 1 and of finite type, and also an entire function of order 

less than 1, characterized by the condition 

 

is said to be of exponential type. 

The zeros  of an entire function  of order  have the 

property 

 

Let  be the least integer  such that . 

Then the following product representation holds (see Hadamard 

theorem on entire functions) 

 

(3) 

where  is a polynomial of degree not exceeding . 

To characterize the growth of an entire function  of finite 

order  and finite type  along rays, one introduces the quantity 

 

— the growth indicator (cf. Growth indicatrix). Here, one always has 

 

If 

 

where  is a set which is small in a certain sense (a set of relative 

measure 0), then the zeros of  are distributed in the plane very 

regularly in a certain sense, and there is a precise relation 

between  and the characteristic (the density) of the zeros. A 

function  with this property is said to be a function of completely 

regular growth. 

A function of several variables  is entire if it is analytic 

for  ( ). Again one may introduce the concepts of 
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order and type (conjugate orders and types). A simple representation in 

the form of an infinite product is not available here, because in contrast 

to the case  the zeros of  are not isolated. 

 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 State Hadamard’s Factorization Theorem. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 Define Entire Function. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

 

13.3 LAGUERRE'S METHOD 

In numerical analysis, Laguerre's method is a root-finding 

algorithm tailored to polynomials. In other words, Laguerre's method can 

be used to numerically solve the equation p(x) = 0 for a given 

polynomial p(x). One of the most useful properties of this method is that 

it is, from extensive empirical study, very close to being a "sure-fire" 

method, meaning that it is almost guaranteed to always converge 

to some root of the polynomial, no matter what initial guess is chosen. 

However, for computer computation, more efficient methods are known, 

with which it is guaranteed to find all roots (see Root-finding algorithm 

§ Roots of polynomials) or all real roots (see Real-root isolation). 



Notes  

146 

                                                                                                                                              

This method is named in honour of Edmond Laguerre, a French 

mathematician. 

 

13.3.1 Laguerre’s Polynomials 

Polynomials that are orthogonal on the interval  with weight 

function , where . The standardized Laguerre 

polynomials are defined by the formula 

 

Their representation by means of the gamma-function is 

 

In applications the most important formulas are: 

 

 

 

The polynomial  satisfies the differential equation (Laguerre 

equation) 

 

The generating function of the Laguerre polynomials has the form 

 

The orthonormal Laguerre polynomials can be expressed in terms of the 

standardized polynomials as follows: 

 

The set of all Laguerre polynomials is dense in the space of functions 

whose square is integrable with weight  on the interval . 

Laguerre polynomials are most frequently used under the 

condition ; these were investigated by E. Laguerre [1], and are 

denoted in this case by  (in contrast to them, the  are 
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sometimes known as generalized Laguerre polynomials). The first few 

Laguerre polynomials  have the form 

 

 

 

 

The Laguerre polynomial  is sometimes denoted by . 

The Laguerre polynomials are solutions  to the Laguerre differential 

equation with . They are illustrated above for  and , 2, 

..., 5, and implemented in the Wolfram Language as LaguerreL[n, x]. 

The first few Laguerre polynomials are 

   

(1) 

   

(2) 

  

 

(3) 

  

 

(4) 

When ordered from smallest to largest powers and with the denominators 

factored out, the triangle of nonzero coefficients is 1; , 1; 2, , 1; , 

18,  1; 24, , ... (OEIS A021009). The leading denominators are 

1, , 2, , 24, , 720, , 40320, , 3628800, .... 

The Laguerre polynomials are given by the sum 

 

(5) 

where  is a binomial coefficient. 

The Rodrigues representation for the Laguerre polynomials is 

 

(6) 
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and the generating function for Laguerre polynomials is 

  

 

(7) 

  

 

(8) 

A contour integral that is commonly taken as the definition of the 

Laguerre polynomial is given by 

 

(9) 

where the contour  encloses the origin but not the point  (Arfken 

1985, pp. 416 and 722). 

The Laguerre polynomials satisfy the recurrence relations 

 

(10) 

(Petkovšek et al. 1996) and 

 

(11) 

Solutions to the associated Laguerre differential 

equation with  and  an integer are called associated Laguerre 

polynomials  

 

13.3.2 Laguerre’s Transform 

The integral transform 

 

where  is the Laguerre polynomial (cf. Laguerre polynomials) of 

degree . The inversion formula is 
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if the series converges. If  is continuous,  is piecewise continuous 

on  and , , , then 

 

 

If  and  are continuous,  is piecewise continuous 

on  and , , , then 

 

If  is piecewise continuous on  and 

, , , then for 

 

 

and for , 

 

Suppose that  and  are piecewise continuous on  and that 

 

 

Then 

 

 

 

The generalized Laguerre transform is 
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where  is the generalized Laguerre polynomial 

 

13.3.3 Laguerre Functions 

 Functions that are solutions of the equation 

 

(*) 

where  and  are arbitrary parameters. Laguerre functions can be 

expressed in terms of the degenerate hypergeometric function or in terms 

of Whittaker functions. For  the solutions of equation (*) are 

called Laguerre polynomials. The function 

 

where  is a Laguerre polynomial, is sometimes also called a 

Laguerre function. 

 

13.3.4 Laguerre’s Differential Equation 

 

The Laguerre differential equation is given by 

 

(1) 

Equation (1) is a special case of the more general associated Laguerre 

differential equation, defined by 

 

(2) 

where  and  are real numbers (Iyanaga and Kawada 1980, p. 1481; 

Zwillinger 1997, p. 124) with . 

The general solution to the associated equation (2) is 

 

(3) 
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where  is a confluent hypergeometric function of the first 

kind and  is a generalized Laguerre polynomial. 

Note that in the special case , the associated Laguerre differential 

equation is of the form 

 

(4) 

so the solution can be found using an integrating factor 

  

 

(5) 

  

 

(6) 

   

(7) 

  

 

(8) 

as 

  

 

(9) 

  

 

(10) 

   

(11) 

where  is the En-function. 

The associated Laguerre differential equation has a regular singular 

point at 0 and an irregular singularity at . It can be solved using a series 

expansion, 

 

(12) 

 

(13) 

 

(14) 

 

(15) 

 

(16) 
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This requires 

  

 

(17) 

  

 

(18) 

for . Therefore, 

 

(19) 

for , 2, ..., so 

  

 

(20

) 

   

(21

) 

  

 

(22

) 

If  is a nonnegative integer, then the series terminates and the solution 

is given by 

 

(23) 

where  is an associated Laguerre polynomial and  is 

a Pochhammer symbol. In the special case , the associated Laguerre 

polynomial collapses to a usual Laguerre polynomial and the solution 

collapses to 

 

 

Check in Progress-II 

Note : Please give solution of questions in space give below: 

Q. 1 Define Laguerre’s polynomials . 
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Solution : 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..………………………………………………………………… 

Q. 2 Define Laguerre’s Differential Equation . 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..………………………………………………………………………………… 

13.4 CONTOUR INTEGRAL 

An integral obtained by contour integration. The particular path in 

the complex plane used to compute the integral is called a contour. 

As a result of a truly amazing property of holomorphic functions, a 

closed contour integral can be computed simply by summing the values 

of the complex residues inside the contour. 

Watson uses the notation  to denote the contour integral 

of  with contour encircling the point  once in a counterclockwise 

direction. 

we learned how to evaluate integrals of the form , 

where f(t) was complex-valued and  was an interval on the real 

axis (so that t was real, with ). In this section, we define and 

evaluate integrals of the form , where f(t) is complex-valued 

and C is a contour in the plane (so that z is complex, with ). 

Recall that to represent a curve C we used the parametric notation 

(1)   for , 
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where x(t) and y(t) are continuous functions. We now place a few more 

restrictions on the type of curve to be described. The following 

discussion leads to the concept of a contour, which is a type of curve that 

is adequate for the study of integration. 

 Recall that C is simple if it does not cross itself, which means that 

 whenever , except possibly when  and 

. A curve C with the property that  is a closed curve. 

If   is the only point of intersection, then we say that C is a 

simple closed curve. As the parameter t increases from the value  to 

the value , the point  starts at the initial point , moves 

along the curve C , and ends up at the terminal point . If C is 

simple, then  moves continuously 

from  to  as t increases and the curve is given an orientation, 

which we indicate by drawing arrows along the curve. Figure 6.1 

illustrates how the terms simple and closed describe a curve. 

 

 

Figure 13.1 The terms simple and closed used to describe curves. 
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 The complex-valued function  is said to be 

differentiable on  if both  and  are differentiable 

for . Here we require the one-sided derivatives 

of  and  to exist at the endpoints of the interval. As the 

derivative  is 

    for  .  

  The curve C defined is said to be a smooth curve if  is 

continuous and nonzero on the interval. If C is a smooth curve, 

then C has a nonzero tangent vector at each point , which is given 

by the vector . If , then the tangent vector 

 is vertical. If , then the slope  of the 

tangent line to C at the point  is given by . Hence for a 

smooth curve the angle of inclination  of its tangent 

vector  is defined for all values of  and is continuous. 

Thus a smooth curve has no corners or cusps. Figure 6.2 illustrates this 

concept. 

  

Figure 13.2 The term smooth used to describe curves. 

 If C is a smooth curve, then , the differential of arc length, is given 

by  

 

  .  

  The function  is continuous, 

as  and  are continuous functions, so the length  of 
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the curve C is  

 

(2)  .  

  Now consider C to be a curve with parameterization  

    for  .  

  The opposite curve  traces out the same set of points in the plane, but 

in the reverse order, and has the parametrization  

    for  .  

Since ,  is merely C traversed in the opposite sense, as 

illustrated in Figure 6.3.  

  

Figure 13.3 The curve  and its opposite curve . 

 A curve C that is constructed by joining finitely many smooth curves 

end to end is called a contour. Let  denote n smooth curves 

such that the terminal point of the curve  coincides with the initial 

point of  for . We express the contour C by the 

equation 

 

  . 

 

A synonym for contour is path.  

  

Example . Find a parameterization of the polygonal path  

from  shown in Figure 6.4. 

Here  is the line from ,  is the line from , 

and  is the line from .  
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Figure 13.4 The polygonal path  from .  

Solution. We express C as three smooth curves, or . If we 

set  and , we can use to get a formula for the straight-

line segment joining two points:  

 

  ,  

 

for . When simplified, this formula becomes  

 

  ,  for  .  

 

Similarly, the segments  are given by  

 

  ,  for  ,  and   

 

  ,  for  .  

We are now ready to define the integral of a complex function along a 

contour C in the plane with initial point A and terminal point B. Our 

approach is to mimic what is done in calculus. We create a partition 

 of points that proceed 

along C from A to B and form the differences  for 

. Between each pair of partition points  we 

select a point  on C, as shown in Figure 6.5, and evaluate the function 
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.  

These values are used to make a Riemann Sum for the partition:  

 

  . 

 

Figure 13.5 Partition points  and function evaluation points  

  for a Riemann sum along the contour C from . 

  Assume now that there exists a unique complex number L that is the 

limit of every sequence  of Riemann sums given , where the 

maximum of  tends toward 0 for the sequence of partitions. We 

define the number L as the value of the integral of the function f(z) taken 

along the contour C. 

13.4.1 Complex Integral 

Definition (Complex Integral). Let C be a contour. Then  

 

  ,  

 

provided that the limit exists in the sense previously discussed. 
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  Note the value of the integral depends on the contour. In the Cauchy-

Goursat theorem will establish the remarkable fact that, if f(z) is analytic, 

then  is independent of the contour. 

Example . Give an exact calculation of the integral in Example 6.6: 

 where C is a the line segment joining the point 

.  

Figure 13.6 

Solution. We must compute , where C is the line 

segment joining , we can parametrize C by 

, for . As , Theorem 6.1 

guarantees that  
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Example . Evaluate the contour integral  where C is a the 

upper semicircle with radius 1 centered at .  

Figure 13.7 

Solution. The function , for  is a parametrization 

for C. We apply Theorem 6.1 with . 

(Note: ), and .) Hence  

 

  

. 
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Example . Show that ,   

where  is the line segment from , and  is the portion 

of the parabola  joining , as indicated in Figure 

6.8.  

 

Figure 13.8 The two contours  and  joining . 

Solution. The line segment joining  is given by the slope 

intercept formula , which can be written as .  

If we choose the parametrization  and , we can write 

segment  as 

    and   

for . 

Along  we have . Applying Theorem 6.1 gives  

  .  

We now multiply out the integrand and put it into its real and imaginary 

parts:  
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Similarly, we can parametrize the portion of the parabola  

joining  by  and  and  so that  

    and   

for . 

Along  we have . Theorem 6.1 now gives  

   

13.5 SUMMARY 

We study in this unit Genus theorem with statement. We study 

Hadamard’s Factorization Theorem with its statement and its proof. We 

study Cauchy-Hadamard Theorem and its proof with statement. We 

study Genus of an Entire Function.We study Entire function with its 

proof. We study Laguerre's method , Laguerre’s Polynomials and its 

properties. We study Laguerre’s Differential Equation.  

13.6 KEYWORD  

Genus : a principal taxonomic category that ranks above species and 

below family, and is denoted by a capitalized Latin name 

Entire : with no part left out; whole. 

Laguerre’s : The algorithm of the Laguerre method to find one 

root of a ... larger absolute value, to avoid loss of significance as iteration 

proceeds 

13.7 QUESTIONS FOR REVIEW 
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Exercise 1. Consider the integral , where C is the positively 

oriented upper semicircle of radius 1, centered at 0.  

  Give a Riemann sum approximation for the integral by selecting  

and using the 

 

points 

  and   

Exercise 2. Show that the integral  where C is a the line segment 

joining the point   

 

 simplifies to  

Exercise 3. Recall  is the circle of radius r centered at a, oriented 

counter-clockwise.  

 Evaluate .   

Exercise 4. Evaluate . (The minus sign in  means the 

clockwise orientation.) 

Ecercise 5 Evaluate , where C is the portion of  in 

the first quadrant. 

Exercise 6 Evaluate , where C s the upper half of .  

Exercise 7. Let   be a continuous function on the circle 

.  

 

Show that  . 
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13.9 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 1.2 

 2 Check in Section 2.1 
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 Check In Progress-II 

Answer Q. 1 Check in section 3.1 

   2 Check in Section 3.4 
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14.2 Picard’s Theorem 
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14.0 OBJECTIVE 

 Deals with Borel fixed-Point Theorem 

 Deals with Borel function and its statement  

 Deals with Fourier-Borel transform 

 Deals with Casorati-Sokhotskii-Weierstrass Theorem 

 Deals with Meromorphic Function 

 Deals with Weierstrass Theorem and its statement with proof 

 Deals with Riemann-Roch Theorem 

 Deals with Cauchy-Riemann Theorem with examples and proof  
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14.1 INTRODUCTION 

In mathematics, the Borel–Carathéodory theorem in complex 

analysis shows that an analytic function may be bounded by its real part. 

It is an application of the maximum modulus principle. It is named for 

Émile Borel and Constantin Carathéodory. 

In complex analysis, Picard's great theorem and Picard's little 

theorem are related theorems about the range of an analytic function. 

They are named after Émile Picard. 

Little Picard Theorem: If a function f : C → C is entire and non-constant, 

then the set of values that f(z) assumes is either the whole complex plane 

or the plane minus a single point. 

Sketch of Proof: Picard's original proof was based on properties of 

the modular lambda function, usually denoted by λ, and which performs, 

using modern terminology, the holomorphic universal covering of the 

twice punctured plane by the unit disc. This function is explicitly 

constructed in the theory of elliptic functions. If f omits two values, then 

the composition of f with the inverse of the modular function maps the 

plane into the unit disc which implies that f is constant by Liouville's 

theorem. 

This theorem is a significant strengthening of Liouville's theorem which 

states that the image of an entire non-constant function must 

be unbounded. Many different proofs of Picard's theorem were later 

found and Schottky's theorem is a quantitative version of it. In the case 

where the values of f are missing a single point, this point is called 

a lacunary value of the function. 

Great Picard's Theorem: If an analytic function f has an essential 

singularity at a point w, then on any punctured neighborhood of w, f(z) 

takes on all possible complex values, with at most a single exception, 

infinitely often. 

This is a substantial strengthening of the Casorati–Weierstrass theorem, 

which only guarantees that the range of f is dense in the complex plane. 
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A result of the Great Picard Theorem is that any entire, non-polynomial 

function attains all possible complex values infinitely often, with at most 

one exception. 

The "single exception" is needed in both theorems, as demonstrated here: 

 e
z
 is an entire non-constant function that is never 0, 

 e
1/z

 has an essential singularity at 0, but still never attains 0 as a 

value. 

 

14.1.1 Borel Fixed-Point Theorem 
 

A connected solvable algebraic group G acting regularly (cf. Algebraic 

group of transformations) on a non-empty complete algebraic 

variety V over an algebraically-closed field k has a fixed point in V. It 

follows from this theorem that Borel subgroups of algebraic groups are 

conjugate (The Borel–Morozov theorem). The theorem was 

demonstrated by A. Borel [1]. Borel's theorem can be generalized to an 

arbitrary (not necessarily algebraically-closed) field k: Let V be 

a complete variety defined over a field k on which a connected 

solvable k-split group G acts regularly, then the set of rational k-

points V(k) is either empty or it contains a point which is fixed with 

respect to G. Hence the generalization of the theorem of conjugation of 

Borel subgroup is: If the field k is perfect, the maximal connected 

solvable k-split subgroups of a connected k-defined algebraic 

group H are mutually conjugate by elements of the group of k-points 

of H. 

14.1.2 Borel Function 
 

Definition 

A map f:X→Y between two topological spaces is called Borel (or Borel 

measurable) if f−1(A) is a Borel set for any open set A (recall that 

the σσ-algebra of Borel sets of X is the smallest σσ-algebra containing 

the open sets). When the target Y is the real line, it suffices to assume 
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that f−1(]a,∞[) is Borel for any a∈R . Consider two topological 

spaces X and Y and the corresponding Borel σσ-algebras B(X) and B(Y). 

The Borel measurability of the function f:X→Y is then equivalent to the 

measurability of the map ff seen as map between the measurable 

spaces (X,B(X)) and (Y,B(Y)), see also Measurable mapping. 

Properties 

As it is always the case for measurable real functions on any measurable 

space X, the space of Borel real-valued functions over a given 

topological space is a vector space and it is closed under the operation of 

taking pointwise limits of sequences (i.e. if a sequence of Borel 

functions fn converges everywhere to a function f, then f is also a Borel 

function), 

 

Closure under composition 

Moreover the compositions of Borel functions of one real variable are 

Borel functions. Indeed, if X,Y and Z are topological spaces 

and f:X→Y, g:Y→Z Borel functions, then g∘f is a Borel function, as it 

follows trivially from the definition above. 

Comparison with Lebesgue measurable functions 

The latter property is false for real-valued Lebesgue measurable 

functions on R (cf. Measurable function): there are pairs of Lebesgue 

measurable functions f,g:R→R such that f∘g is not Lebesgue measurable 

(the Lebesgue measurability of f∘g holds if we assume in addition 

that f is continuous, whereas it fails if we assume the continuity of g but 

only the Lebesgue measurability of f,  

All Borel real valued functions on the euclidean space are Lebesgue-

measurable, but the converse is false. However, it follows easily 

from Lusin's Theorem that for any Lebesgue-measurable 

function ff there exists a Borel function gg which coincides 

with ff almost everywhere (with respect to the Lebesgue measure). 

Comparison with Baire functions 

Borel functions f:R→R are sometimes called Baire functions, since in 

this case the set of all Borel functions is identical with the set of 

functions belonging to the Baire classes (Lebesgue's theorem, [Hau]). 
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However, in the context of a general topological space X the space of 

Baire functions is the smallest family of real-valued functions which is 

close under the operation of taking limits of pointwise converging 

sequences and which contains the continuous functions. In a general 

topological space the class of Baire functions might be strictly smaller 

then the class of Borel functions. 

Borel real-valued functions of one real variable can be classified by the 

order of the Borel sets; the classes thus obtained are identical with the 

Baire classes. 

 

14.1.3 Fourier-Borel Transform 

Let  be the -dimensional complex space, and let  denote the 

space of entire functions in  complex variables, equipped with the 

topology of uniform convergence on the compact subsets of  (cf. 

also Entire function; Uniform convergence). Let  be its dual 

space of continuous linear functionals. The elements of  are 

usually called analytic functionals in . 

One says that a compact set  is a carrier for an analytic 

functional  if for every open neighbourhood  of  there 

exists a positive constant  such that, for every , 

 

General references for these notions are [a3], [a5]. 

Let . The Fourier–Borel transform  is defined by 

 

where  

For , the use of this transform goes back to E. Borel, while 

for  it first appeared in a series of papers by A. Martineau, 

culminating with [a6]. 
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It is immediate to show that  is an entire function. Moreover, since 

the exponentials are dense in , an analytic functional is uniquely 

determined by its Fourier–Borel transform. 

By using the definition of carrier of an analytic functional, it is easy to 

see that if  is carried by a compact convex set , then for 

every  there exists a number  such that, for any , 

 

where  is the support function of . 

A fundamental result in the theory of the Fourier–Borel transform is the 

fact that the converse is true as well: Let  be an entire function. 

Suppose that for some compact convex set  and for every  there 

exists a number  such that, for any , 

 

(a1) 

Then  is the Fourier–Borel transform of an analytic 

functional  carried by . 

This theorem, for , was proved by G. Pólya, while for  it is 

due to A. Martineau [a7]. 

In particular, the Fourier–Borel transform establishes an isomorphism 

between the space  and the space  of entire 

functions of exponential type, i.e. those entire functions  for which 

there are positive constants ,  such that 

 

If  is endowed with the strong topology, and  with 

its natural inductive limit topology, then the Fourier–Borel transform is 

actually a topological isomorphism, [a2]. 

A case of particular interest occurs when, in the above assertion, one 

takes . In this case, a function which satisfies the estimate (a1), 

i.e. 
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is said to be of exponential type zero, or of infra-exponential type. Given 

such a function , there exists a unique analytic functional  such 

that ; such a functional is carried by  and therefore is 

a continuous linear functional on any space , for  an open 

subset of  containing the origin. If one denotes by  the space of 

germs of holomorphic functions at the origin (cf. also Germ), 

then , the space of hyperfunctions supported at the origin 

(cf. also Hyperfunction); the Fourier–Borel transform is therefore well 

defined on such a space. In fact, it is well defined on every hyperfunction 

with compact support. For this and related topics, see e.g. [a1], [a4]. 

The Fourier–Borel transform is a central tool in the study of convolution 

equations in convex sets in . As an example, consider the problem of 

surjectivity. Let  be an open convex subset of  and 

let  be carried by a compact set . Then the convolution 

operator 

 

is defined by 

 

One can show (see [a5] or [a1] and the references therein) that if  is 

of completely regular growth and the radial regularized indicatrix 

of  coincides with , then  is a surjective operator. The 

converse is true provided that  is bounded, strictly convex, 

with  boundary. 

 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 Give definition of Borel Function. 

Solution : 

……………………………………………………………………………
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……………………………………………………………………………

….………………………………………………………………………… 

Q. 2 State Fourier-Borel Transform . 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….………………………………………………………………………… 

14.2 PICARD’S THEOREM 

Picard's theorem on the behaviour of an analytic function  of a 

complex variable  near an essential singular point  is a result in 

classical function theory that is the starting point of numerous profound 

researches. It consists of two parts: a) Picard's little theorem: Any entire 

function  assumes any finite complex value with the 

possible exception of one value; and b) Picard's big theorem: Any single-

valued analytic function  assumes any finite complex value, with 

the possible exception of one value, in an arbitrary neighbourhood 

around an isolated essential singular point . 

This theorem was first published by E. Picard , 

and it substantially supplements the Sokhotskii theorem. Picard's little 

theorem is a consequence of the big one. It follows directly from Picard's 

big theorem that any finite complex value, with the possible exception of 

one value, is assumed in an arbitrary neighbourhood of an essential 

singular point infinitely often. For a meromorphic function in the finite 

plane , Picard's theorem takes the form: If the 

point  is essentially singular for a function  that is 

meromorphic in , then in an arbitrary neighbourhood of  the 

function  assumes any complex value in the extended complex 

plane , with the possible exception of two values, 

and moreover infinitely often. The examples of the entire 

function  and the meromorphic function  show that 
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all these assertions are precise. The exceptional values appearing in 

Picard's theorem are called Picard exceptional values. 

Picard's theorem is substantially supplemented by the Iversen 

theorem and the Julia theorem, which show, respectively, that the Picard 

exceptional values are asymptotic values (cf. Asymptotic value) and that 

there exist Julia rays  starting at the essential singular point  and such 

that the non-exceptional values are taken infinitely often even in an 

arbitrary small sector having its vertex at  and  as symmetry axis. 

The following two directions are characteristic in modern studies related 

to Picard's theorem. Let  be the set of essential singular points of a 

meromorphic function , i.e.  is a meromorphic function in a 

certain neighbourhood of any point , and suppose that the cluster 

set  of  at a point  does not reduce to one value. 

Let , , be the set of those values  that are assumed 

infinitely often in any neighbourhood of . Then Picard's theorem asserts 

that if  is an isolated point in , the complement 

 

has the Picard property, i.e. it consists of at most two points. V.V. 

Golubev established in 1916 that if the capacity of  is zero, , 

then  has capacity zero for all . It has not been 

completely determined (up till 1983) what minimal conditions must be 

imposed on  in order that the set  has the Picard property for 

all . Examples show that on the one hand the 

condition  is not sufficient, while on the other that there is a 

set , , outside which there do not exist meromorphic 

transcendental functions omitting four values , , . 

The second direction is related to generalizations of Picard's theorem to 

analytic functions  of several complex variables 

, . For , Picard's theorem can also be formulated as follows: 

Any holomorphic mapping  that omits at least two points is 

constant. However, in 1922, P. Fatou constructed an example of a non-

singular holomorphic mapping (and even of a biholomorphic 

mapping)  for which the set of exceptional 
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values  contains a non-empty open set. This means that 

Picard's theorem (and even Sokhotskii's theorem) cannot be generalized 

directly to the case . Generalizations of Picard's theorem are 

possible if one starts, for example, from another formulation, which is 

somewhat artificial for : Any holomorphic 

mapping  into the complex projective plane  that 

omits at least three hyperplanes (i.e. points for ) is constant. In 

particular, Green's theorem applies: Any holomorphic 

mapping  that omits at least  hyperplanes in 

general position is constant (cf. , , ). 

Picard's theorem on the uniformization of algebraic curves: If 

an algebraic curve  has genus , then there exists no 

pair of meromorphic functions ,  such 

that . In other words, uniformization of algebraic 

curves of genus  by means of meromorphic functions is impossible. 

On the other hand, one can always perform uniformization in the 

case  by means of (meromorphic) elliptic functions. 

 

14.2.1 Casorati-Sokhotskii-Weierstrass Theorem 

 

A theorem which characterizes isolated essential 

singularities of holomorphic functions of one complex variable 

Theorem Let f:U→C be an holomorphic function and z0 a point for 

which U is a punctured neighborhood. Then either the limit 

limz→z0f(x) 

exists in the extended complex plane C¯, or otherwise the cluster 

set C(z0,f) (namely the set of points w∈C¯ for which there is a 

sequence zn→z0 with f(zn)→w is the entire C¯. 

In the latter case, the singularity is called essential. When the limit exists, 

then z0z0 is either a removable singularity, in which case the limit 

belongs to C, or a pole. Removable singularities, poles and essential 

singularities can also be characterized using the Laurent series. The 
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assumption that ff is defined on a punctured neighborhood of z0 can be 

weakend (see Essential singular point). Instead there is no direct 

generalization to the case of holomorphic functions of several complex 

variables. 

The Casorati-Sokhotskii-Weierstrass theorem was the first result 

characterizing the cluster set of an analytic function ff at an essential 

singularity. A stronger theorem from which the Casorati-Sokhotskii-

Weierstrass theorem can be inferred is the Picard theorem. 

 

14.2.2 Meromorphic Function 

 

Meromorphic Function of one complex variable in a domain  (or 

on a Riemann surface ) 

A holomorphic function in a domain  which has at 

every singular point  a pole (cf. Pole (of a function), i.e.  is an 

isolated point of the set , which has no limit points in , 

and ). The collection  of all 

meromorphic functions in  is a field with respect to the usual pointwise 

operations followed by redefinition at the removable singularities. 

The quotient  of two arbitrary holomorphic functions in 

, , is a meromorphic function in . Conversely, every 

meromorphic function in a domain  (or on a non-compact 

Riemann surface ) can be expressed as , , 

where  are holomorphic and have no common zeros in . It 

follows that on a non-compact Riemann surface  the 

field  coincides with the field of fractions of the ring  of 

holomorphic functions in . 

Every meromorphic function  defines a continuous 

mapping  of the domain  into the Riemann sphere , 

which is a holomorphic mapping relative to the standard complex 

structure on . Conversely, every holomorphic 

mapping , , defines a meromorphic 
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function  in : The set of poles of  coincides with the discrete 

set  and  if . 

Thus, the meromorphic functions of one variable may be identified with 

the holomorphic mappings ( ) into the Riemann sphere. 

The basic problems in the theory of meromorphic functions are those 

concerning the existence (and construction) of meromorphic functions 

with prescribed singularities. 

I) One is given a (closed) discrete subset  and, at 

each point , the principal part of a Laurent expansion (cf. Laurent 

series) 

 

it is required to find a meromorphic function  with these 

principal parts, i.e. a holomorphic function  in  such 

that  is holomorphic in a neighbourhood of  for each . If the 

number of points  is finite, then (in a domain ) the problem is 

trivially solved by the function . In the general case this problem 

is solved by the Mittag-Leffler theorem: On every non-compact Riemann 

surface there exists a meromorphic function with given principal 

parts , . On a compact Riemann surface (for instance, a 

torus) this problem has in general no solution — supplementary 

conditions concerning the compatibility of the principal parts must be 

imposed. 

The second basic problem is conveniently formulated in the language of 

divisors (cf. Divisor), i.e. of mappings  such that for every 

compactum  the number of points  at which  is 

finite (the number  is called the multiplicity of  at ). Divisors 

can explicitly be written as formal sums , where  are 

the points at which ; in the case of finitely many 

terms the number  ( ) is called the degree of the 

divisor . For a meromorphic function  its divisor  is equal to zero 

everywhere apart from the zeros and poles of , at which the multiplicity 
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is set equal to the order of the zero or of the pole (poles have negative 

orders). 

II) At the points of a (closed) discrete subset  one is 

given "multiplicities" — integers . It is required to find a 

meromorphic function with zeros and poles of the respective 

multiplicities, i.e. a holomorphic function  in  such 

that  is holomorphic and does not vanish in a 

neighbourhood of the point , . In the case of finitely 

many points  (and ) such a function is, for 

example, . In the general case the problem is 

solved by Weierstrass' theorem: On a non-compact Riemann surface , 

for every given divisor  there is a meromorphic function  with 

divisor  equal to . For a compact Riemann surface  the 

holomorphic mapping into the Riemann sphere defined by a non-

constant meromorphic function  is a branched covering, and hence the 

function  takes every value the same number of times; in particular, the 

number of zeros of  equals the number of its poles (multiplicities taken 

into account). Therefore, the condition  is necessary in 

order that problem II admits a solution on a compact Riemann surface. In 

general, it is not sufficient; a necessary and sufficient condition for the 

existence of a meromorphic function with a given divisor is given by 

Abel's theorem . 

Let  be a divisor on a compact Riemann surface . The 

functions  satisfying the condition  form a 

finite-dimensional linear space  (over ); if , 

then . 

The Riemann–Roch theorem asserts that 

 

where  and  are the so-called canonical divisor and, respectively, the 

genus of the Riemann surface . From this relation one can obtain many 

existence theorems (if , then , 

and hence  contains non-constant meromorphic functions). For 
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example, on every compact Riemann surface  of genus  there is a 

meromorphic function which realizes a branched 

covering  with at most  sheets. 

An important place in the theory of meromorphic functions of one 

complex variable is occupied by value-distribution theory (Nevanlinna 

theory), which studies the distribution of the roots of the 

equations , , when approaching the boundary 

of the domain 

 

14.2.3 Meromorphic Functions of Several Complex 

Variables 

 

Let  be a domain in  (or an -dimensional complex manifold) and 

let  be a (complex-) analytic subset of codimension one (or 

empty). A holomorphic function  defined on  is called a 

meromorphic function in  if for every point  one can find an 

arbitrarily small neighbourhood  of  in  and 

functions  holomorphic in  without common non-invertible 

factors in , such that  in . The set  is 

called the polar set of the meromorphic function . Its subset , 

defined locally by the condition , is called the set of (points 

of) indeterminacy of ;  is an analytic subset of  of (complex) 

codimension . At each point  the function  is essentially 

undefined: The limiting values of  for , , fill up 

the Riemann sphere . On the other hand, at the points 

of  the limit  exists, and upon 

redefining  if , one obtains a holomorphic 

mapping of  into the Riemann sphere. Conversely, if  is an 

arbitrary (possibly empty) complex-analytic subset of  of 

codimension , then every holomorphic 

mapping  defines a meromorphic function 

on  that is equal to  on , where  is either 
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an analytic subset of  of codimension 1 or is empty. Thus, a 

meromorphic function  in  can be defined as a holomorphic mapping 

into the Riemann sphere defined in the complement of an analytic 

subset  of codimension . 

A third, completely localized, definition of meromorphic functions 

(equivalent to the one given above) is stated in the language of sheaves. 

Let  be the sheaf of germs of holomorphic functions on , and for 

each point  let  denote the field of fractions of the ring  (the 

stalk of the sheaf  over ). Then  is naturally endowed 

with the structure of a sheaf of fields, called the sheaf of germs of 

meromorphic functions in . A meromorphic function in  is defined 

as a global section of , i.e. a continuous mapping  such 

that  for all . The sets  and  are defined as follows: 

If , , , then one may assume 

that  and  are mutually prime, i.e. they have no common non-

invertible factors in ; then  if , 

while  if . The value at a point  of the 

meromorphic function  thus defined is . 

As in the one-dimensional case, the collection of all meromorphic 

functions in  forms a field  with respect to the pointwise 

algebraic operations with a subsequent redefinition at the removable 

singularities. 

The closure  of the zero set of a meromorphic function , i.e. of 

the set , is an analytic subset of  of 

codimension one (or empty); the set of indeterminacy is . 

On  and  one can define the order (multiplicity) of the zeros (or 

poles) of the meromorphic function . If  is a regular point of the 

analytic set , then in some neighbourhood  of  the 

set  is connected and is given by an equation 

, , where  throughout . Hence there is a maximal 

integer  such that the function  admits a holomorphic 

extension to ; this number is called the order (of the zero  if , 
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and of the pole  if ) of the meromorphic function  at the 

point . The function  is locally constant on the set of regular 

points of . Therefore one can attach to each meromorphic function 

in  its divisor , where  are the irreducible 

components of  and  is the multiplicity (order) of  at the 

regular points of  that belong to  (alternative 

notations: , etc.). On a compact complex manifold a 

meromorphic function is uniquely defined by its divisor, up to a 

multiplicative constant. 

The problems solved in the one-dimensional case by the Mittag-Leffler 

and Weierstrass theorems are known in the higher-dimensional case as 

the first (additive) and the second (multiplicative) Cousin problems. Due 

to the complicated structure of the polar set , the notion of a principal 

part of a meromorphic function is not defined in general, and accordingly 

the Cousin problems are formulated as follows. 

I) Suppose that an open covering  of the manifold  and in 

each  a meromorphic function  are given; it is required to find a 

meromorphic function  such that  for 

all . 

II) For a given divisor  on , find a meromorphic 

function  such that . 

The conditions of solvability of these problems in the higher-dimensional 

case are considerably more stringent than in the one-dimensional case. 

The problem of representing a meromorphic function as a quotient of 

two holomorphic functions is called the Poincaré problem. The strong 

Poincaré problem is to represent a meromorphic function as a quotient of 

holomorphic functions the germs of which at each point  are 

mutually prime in . The Poincaré problem is unsolvable on a compact 

connected complex manifold if there are non-constant meromorphic 

functions on it. However, this problem is solvable in every 

domain  and, in fact, in an arbitrary domain on a Stein 
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manifold . The solvability of the strong Poincaré problem follows from 

that of the Cousin II problem (the converse is not true). 

Functions  are said to be algebraically dependent if 

there is a polynomial  in  variables with complex coefficients 

such that  in the common domain of 

definition of the functions . The maximal number of algebraically-

independent meromorphic functions on  is called the transcendence 

degree of the field . On a compact complex manifold this 

number does not exceed the (complex) dimension of the manifold 

(Siegel's theorem); furthermore, the field  has a finite number of 

generators. 

On concrete complex manifolds, meromorphic functions may have 

supplementary properties. For instance, in the complex projective 

space  the set of indeterminacy of any non-constant meromorphic 

function is not empty. Every meromorphic function on a projective 

algebraic variety is rational, i.e. is expressible as a quotient  of 

homogeneous polynomials in homogeneous coordinates. On algebraic 

varieties the field  is quite rich. On the other hand, there exist 

complex manifolds (for example, some non-algebraic tori) on which 

every meromorphic function is constant. Higher-dimensional 

generalizations of the Riemann–Roch theorem are less effective, and 

existence theorems for various classes of meromorphic functions can 

only be obtained for some classes of complex manifolds. 

 

14.2.4 Weierstrass Theorem 
 

Infinite product theorem 

Weierstrass' infinite product theorem [1]: For any given sequence of 

points in the complex plane , 

 

(1) 
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there exists an entire function with zeros at the points  of this 

sequence and only at these points. This function may be constructed as 

a canonical product: 

 

(2) 

where  is the multiplicity of zero in the sequence (1), and 

 

The multipliers 

 

are called Weierstrass prime multipliers or elementary factors. The 

exponents  are chosen so as to ensure the convergence of the product 

(2); for instance, the choice  ensures the convergence of (2) for 

any sequence of the form (1). 

It also follows from this theorem that any entire function  with 

zeros (1) has the form 

 

where  is the canonical product (2) and  is an entire function 

(see also Hadamard theorem on entire functions). 

Weierstrass' infinite product theorem can be generalized to the case of an 

arbitrary domain : Whatever a sequence of 

points  without limit points in , there exists a 

holomorphic function  in  with zeros at the points  and only at 

these points. 

The part of the theorem concerning the existence of an entire function 

with arbitrarily specified zeros may be generalized to functions of several 

complex variables as follows: Let each point  of the complex space 

, , be brought into correspondence with one of its 

neighbourhoods  and with a function  which is holomorphic 
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in . Moreover, suppose this is done in such a way that if the 

intersection  of the neighbourhoods of the 

points  is non-empty, then the fraction  is a 

holomorphic function in . Under these conditions there exists 

an entire function  in  such that the fraction  is a holomorphic 

function at every point . This theorem is known as Cousin's 

second theorem 

 

14.2.5 Riemann-Roch Theorem 

 

A theorem expressing the Euler characteristic  of a locally free 

sheaf  on an algebraic or analytic variety  in terms of the 

characteristic Chern classes of  and  (cf. Chern class). It can be used 

to calculate the dimension of the space of sections of  (the Riemann–

Roch problem). 

The classical Riemann–Roch theorem relates to the case of non-singular 

algebraic curves  and states that for any divisor  on , 

 

(1) 

where  is the dimension of the space of 

functions  for which ,  is the canonical 

divisor and  is the genus of . In the middle of the 19th century B. 

Riemann used analytic methods to obtain the inequality 

 

The equality (1) was proved by E. Roch. 

The Riemann–Roch theorem for curves is the one-dimensional case of 

the more general Riemann–Roch–Hirzebruch–Grothendieck theorem. 

Let  be a non-singular projective variety of dimension , and 

let  be an appropriate cohomology theory: 

either  are singular cohomology spaces when the 

basic field , or  where  is a Chow ring, 

or  is the ring associated to the Grothendieck 
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ring  (see [2], [7]). Let  be a locally free sheaf of rank  on . 

Universal polynomials for  with rational 

coefficients,  and , in the Chern 

classes  of  are defined in the following way. The 

factorization 

 

is examined for the Chern polynomial, where the  are formal symbols. 

The exponential Chern character is defined by the formula 

 

and, accordingly, the Todd class is defined as 

 

 and  are symmetric functions in the  and they can be 

written as polynomials in . 

The Riemann–Roch–Hirzebruch theorem: If  is a non-singular 

projective variety or a compact complex variety of dimension  and 

if  is a vector bundle of rank  on , then 

 

where  is the tangent sheaf on  and  denotes the 

component of degree  in . This theorem was proved by F. 

Hirzebruch in the case of the ground field . When  and the 

invertible sheaf , it leads to the equation 

 

where  is the second Chern class of the surface  and  is 

its canonical class. In particular, when  Noether's formula is 

obtained: 

 

For three-dimensional varieties  the theorem leads to 
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In particular, when , 

 

In 1957, A. Grothendieck generalized the Riemann–Roch–Hirzebruch 

theorem to the case of a morphism of non-singular varieties over an 

arbitrary algebraically closed field (see [1]). Let  and  be the 

Grothendieck groups of the coherent and locally free sheafs on , 

respectively (cf. Grothendieck group). The functor  is a covariant 

functor from the category of schemes and proper morphisms into the 

category of Abelian groups. In this case, for a proper 

morphism  the morphism  is defined by the 

formula 

 

where  is an arbitrary coherent sheaf on  and  is a covariant 

functor into the category of rings. For regular schemes with an ample 

sheaf, the groups  and  coincide and are denoted by . 

The Chern character  is a homomorphism of 

rings;  is also a covariant functor: The Gizin 

homomorphism  is defined. 

When , the homomorphism  is obtained 

from  for homology spaces using Poincaré duality. The theorem as 

generalized by Grothendieck expresses the measure of deviation from 

commutativity of the homomorphisms  and . 

The Riemann–Roch–Hirzebruch–Grothendieck theorem: 

Let  be a smooth projective morphism of non-singular 

projective varieties; then for any  the equation 

 

in  is true, where  (the relative 

tangent sheaf of the morphism ). 
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When  is a point, this theorem reduces to the Riemann–Roch–

Hirzebruch theorem. There are generalizations (see [5], [6], [7]) 

when  is a Noetherian scheme with an ample invertible sheaf, 

when  is a projective morphism whose fibres are locally complete 

intersections, and also to the case of singular quasi-projective varieties. 

Several versions of the Riemann–Roch theorem are closely connected 

with the index problem for elliptic operators (see Index formulas). For 

example, the Riemann–Roch–Hirzebruch theorem for compact complex 

varieties is a particular case of the Atiyah–Singer index theorem. 

 

Check in Progress-I 

Note : Please give solution of questions in space give below: 

Q. 1 State Picard’s Theorem. 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..…………………………………………………………………

……………… 

Q. 2 State Weierstrass' infinite product theorem . 

Solution : 

……………………………………………………………………………

……………………………………………………………………………

….…………………………………………………………………………

………..………………………………………………………………………………… 

14.3 CAUCHY-RIEMANN EQUATIONS 

Theorem 3.1 (Cauchy-Riemann Equations). Suppose that  

(3-1) ,  

is differentiable at the point .  Then the partial derivatives 
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of  exist at the point ,  

and can be used to calculate the derivative at . That is,   

(3-2) ,  

  and also  

(3-3) .  

Equating the real and imaginary parts of Equations (3-2) and (3-3) gives 

the so-called Cauchy-Riemann Equations: 

(3-4)  and . 

Example 3.2. We know that    is differentiable and 

that  .   

Furthermore, the Cartesian coordinate form for  is 

  .  

Use the Cartesian coordinate form of the Cauchy-Riemann equations and 

find .  

Solution. It is easy to verify that Cauchy-Riemann equations (3-4) are 

indeed satisfied: 

   and .  

Using Equations (3-2) and (3-3), respectively, to compute  gives 

  ,  

  and   

  , 

  as expected. 

 Solution. It is easy to verify that Cauchy-Riemann equations (3-4) are 

indeed satisfied: 

   and .  

Using Equations (3-2) and (3-3), respectively, to compute  gives 

 

  ,  

  and   

  , 
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as expected. We are done. 

 Example 3.3. Show that    is nowhere differentiable. 

Solution. We have  

,  where  

   and .  

Thus, for any point ,  

   and .  

The Cauchy-Riemann equations (3-4) are not satisfied at any point 

, so we conclude that  

  is nowhere differentiable 

Solution. We have  

,  where  

   and .  

Thus, for any point ,  

   and .  

The Cauchy-Riemann equations (3-4) are not satisfied at any 

point  ,  so we conclude that  

  is nowhere differentiable. 

 Theorem 3.4 (Cauchy-Riemann conditions for differentiability). 

Assume that    

is a continuous function that is defined in some neighborhood of the 

point . If all the partial derivatives  

 are continuous at the point 

 and if the Cauchy-Riemann equations  

(3-2)   and   

hold at  ,  then  is differentiable at , and the 

derivative    

can be computed with either formula (3-2) or (3-3), i. e.  

,  
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  or  

  

Example 3.5. At the beginning of this section (Equation (3.1)) 

we defined the function  

  .   

Show that this function is differentiable for all , and find its 

derivative. 

Solution. We 

compute    and  

,  so the 

Cauchy-Riemann Equations (3-5), are satisfied. Moreover, the 

partial derivatives 

 are continuous 

everywhere.   

By Theorem 3.4,    is 

differentiable everywhere, and, from Equation (3-2),  
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Alternatively, from Equation (3-3), 

 

   

This result isn't surprising 

because  ,   

and so the function  is really our old friend  .  

Solution. We 

compute    and  

,  so the 

Cauchy-Riemann equations , are satisfied. Moreover, the partial 

derivatives 

  are continuous 

everywhere.   

By Theorem 3.4,    is differentiable 

everywhere, and, from Equation (3-3),  
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Alternatively, from Equation (3-4), 

   

This result isn't surprising 

because  ,   

and so the function  is really our old friend  .  

 We are done. 

Exercise 1. Let .  

Show that both f(z) and f'(z) are differentiable for all z.  

Answer.  and 

 by Theorem 3.4. 

Solution. ,  and  

 ,  so that  

 , , , 

.   

The Cauchy Riemann equations are  

  ,  

  , 

which hold for all z. 

The partials are continuous everywhere, so   
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,  

for all z. 

Exercise 2. A vector field  is said to be 

irrotational if .  

It is said to be solenoidal if .  

If f(z) is an analytic function, show that  is both irrotational 

and solenoidal. 

Solution. Let  be an analytic function.  

By definition, ,  so 

, , ,  and  

.  

By the Cauchy-Riemann equations, 

  ,  and  

  .  

Therefore  is both irrotational and solenoidal.   

Exercise 3.  . 

Hint. Use the contour  shown in the figure below, 

and establish that . 

Answer.  .  

Solution. The complex integrand is .  

The denominator is  

. 

The zeros of  are . 
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The poles of  are 

. 

We will use the contour  consisting of the semi-

circle  and the interval , 

and the segment .  The pole  

lies in inside . 

  

  The point  lies in inside . 

Using (Cauchy's Residue Theorem), we obtain 

    

Since  is a simple pole, by the residue is calculated as 

follows: 
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On the segment  we use the change of variable  and 

 for , 

and we can calculate the contour integral over  in the 

following manner:   
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  .  

  Now use the value contour integral that we obtained by the residue 

calculus 

 

   

An easy computation will now finish our work 

 

    

We aredone.   

14.4 SUMMARY  

We study in this unitBorel fixed-Point Theorem and its proof. We study 

Borel function and its statement . We study Fourier-Borel transform and 

its proof. We study Casorati-Sokhotskii-Weierstrass Theorem.We study 

Meromorphic Function. We study Weierstrass Theorem and its statement 

with proof. We study Riemann-Roch Theorem. We study Cauchy-

Riemann Theorem with examples and proof with definition.  
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14.5 KEYWORD 

Borel Fixed-Point : If G is a connected, solvable, linear algebraic 

group acting regularly on a non-empty, complete algebraic variety V 

over an algebraically closed field k, then there is a G fixed-point of V. A 

more general version of the theorem holds over a field k that is not 

necessarily algebraically closed 

Riemann-Roch : It relates the complex analysis of a connected 

compact Riemann surface with the surface's purely topological genus g, 

in a way that can be carried over into purely algebraic settings. 

Meromorphic : a meromorphic function on an open subset D of the 

complex plane is a function that is holomorphic on all of D except for a 

set of isolated points, which are poles of the function 

Irrotational : (especially of fluid motion) not rotational; having no 

rotation 

14.6 QUESTIONS FOR REVIEW 

Exercise 1. Let  be a differentiable function. 

Verify the identity 

.  

Exercise 2. Find the constants a and b such that 

 is differentiable for all z.  

Exercise 3. Let f(z)  be differentiable at the point .  

Let z approach  along the ray  and how that Equation

 holds.  

Exercise 4. Let .  
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Show that both f(z) and f'(z) are differentiable for all z.  

Exercise 5. A vector field  is said to be 

irrotational if .  

It is said to be solenoidal if .  

If f(z) is an analytic function, show that  is both irrotational 

and solenoidal. 

Exercise 6. Determine where the following functions are differentiable 

and where they are analytic. Explain!  

. 
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14.8 ANSWER TO CHECK YOUR 

PROGRESS 

 Check In Progress-I 

Answer Q. 1 Check in Section 1.3 

 2 Check in Section 1.4 

 Check In Progress-II 

Answer Q. 1 Check in section 2 

   2 Check in Section 2.4 

 

 


